Wang, Xiaofei published the artcilePredominant constitutive CFTR conductance in small airways, Computed Properties of 307510-92-5, the publication is Respiratory Research (2005), 6(1), No pp. given, database is CAplus and MEDLINE.
Background: The pathol. hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is know of the fluid and electrolyte transport properties of airways of less than a few mm diameter Methods: We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results: In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean+sem: -3± mV; n=25), but when gluconate replaced luminal Cl– the bionic Cl– diffusion potentials (-58±3 mV; n=25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl– permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electroneg. with stimulation by luminal forskolin (5 μM)+IBMX (100 μM), ATP (100 μM), or adenosine (100 μM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM), GlyH-101* (5-50 μM), and CFTRInh-172* (5 μM). RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCCl. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion: These results indicate that the small airway of the pig is characterized by a constitutively active Cl– conductance that is most likely due to CFTR.
Respiratory Research published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C40H35N7O8, Computed Properties of 307510-92-5.
Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com