Thiagarajah, Jay R.’s team published research in Gastroenterology in 126 | CAS: 307510-92-5

Gastroenterology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C7H5FN2, Application In Synthesis of 307510-92-5.

Thiagarajah, Jay R. published the artcilePrevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor, Application In Synthesis of 307510-92-5, the publication is Gastroenterology (2004), 126(2), 511-519, database is CAplus and MEDLINE.

Background & Aims: The cystic fibrosis transmembrane conductance regulator (CFTR) provides an important apical route for Cl secretion across intestinal epithelia. A thiazolidinone-type CFTR blocker (CFTRinh-172) reduced cholera toxin-induced fluid accumulation in mouse intestinal loops. Here, we characterize the efficacy and pharmacodynamics of CFTRinh-172 in blocking cAMP and cGMP induced Cl/fluid secretion in rodent and human intestine. Methods & Results: CFTRinh-172 inhibited cAMP and cGMP agonist induced short-circuit current by >95% in T84 colonic epithelial cells (KI ∼ 3 μmol/L) and in mouse and human intestinal sheets (KI ∼ 9 μmol/L). A single i.p. injection of CFTRinh-172 (200 μg) blocked intestinal fluid secretion in a rat closed-loop model by >90% for cholera toxin and >70% for STa Escherichia coli toxin. In mice, CFTRinh-172 (20 μg) inhibited cholera toxin-induced intestinal fluid secretion by 90% (persistence t1/2 ∼10 h, KI ∼ 5 μg) and STa toxin by 75% (KI ∼ 10 μg). Tissue distribution and pharmacokinetic studies indicated intestinal CFTRinh-172 accumulation facilitated by enterohepatic circulation. An oral CFTRinh-172 preparation reduced fluid secretion by >90% in a mouse open-loop cholera model. Conclusions: A small mol. CFTR blocker markedly reduced intestinal ion and fluid secretion caused by cAMP/cGMP-dependent bacterial enterotoxins. CFTR inhibition may thus reduce fluid secretion in infectious secretory diarrheas.

Gastroenterology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C7H5FN2, Application In Synthesis of 307510-92-5.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Chang, Jianjun’s team published research in Cell Biology and Toxicology in 36 | CAS: 307510-92-5

Cell Biology and Toxicology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Category: thiazolidine.

Chang, Jianjun published the artcileIon transport mechanisms for smoke inhalation-injured airway epithelial barrier, Category: thiazolidine, the publication is Cell Biology and Toxicology (2020), 36(6), 571-589, database is CAplus and MEDLINE.

We aimed to analyze the effects of thermal stress and smoke aldehyde on the permeability of the airway epithelial barrier. Transepithelial resistance (RTE) and short-circuit current (ISC) of mouse tracheal epithelial monolayers were digitized by an Ussing chamber setup. Na+ depletion, amiloride (an inhibitor for epithelial Na+ channels [ENaCs]), ouabain (a blocker for Na+/K+-ATPase), and CFTRinh-172 (a blocker of cystic fibrosis transmembrane regulator [CFTR]) altered the responses of RTE and ISC to thermal stress. Acrolein, one of the main oxidative unsaturated aldehydes in fire smoke, eliminated RTE and ISC. Na+ depletion, amiloride, ouabain, and CFTRinh-172 suppressed acrolein-sensitive ISC, but showed activating effects on acrolein-sensitive RTE. Thermal stress or acrolein disrupted zonula occludens-1 tight junctions, increased fluorescein isothiocyanate-dextran permeability but did not cause cell death or detachment. The synergistic effects of thermal stress and acrolein exacerbated the damage to monolayers. In conclusion, the paracellular pathway mediated by the tight junctions and the transcellular pathway mediated by active and passive ion transport pathways contribute to impairment of the airway epithelial barrier caused by thermal stress and acrolein.

Cell Biology and Toxicology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Category: thiazolidine.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Sui, Jin-Liang’s team published research in Assay and Drug Development Technologies in 8 | CAS: 307510-92-5

Assay and Drug Development Technologies published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is CBF6K, Product Details of C18H10F3NO3S2.

Sui, Jin-Liang published the artcileOptimization of a Yellow Fluorescent Protein-Based Iodide Influx High-Throughput Screening Assay for Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators, Product Details of C18H10F3NO3S2, the publication is Assay and Drug Development Technologies (2010), 8(6), 656-668, database is CAplus and MEDLINE.

Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).

Assay and Drug Development Technologies published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is CBF6K, Product Details of C18H10F3NO3S2.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Okuda, Kenichi’s team published research in American Journal of Respiratory and Critical Care Medicine in 203 | CAS: 307510-92-5

American Journal of Respiratory and Critical Care Medicine published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Computed Properties of 307510-92-5.

Okuda, Kenichi published the artcileSecretory cells dominate airway CFTR expression and function in human airway superficial epithelia, Computed Properties of 307510-92-5, the publication is American Journal of Respiratory and Critical Care Medicine (2021), 203(10), 1275-1289, database is CAplus and MEDLINE.

Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. ScRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. ScRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTRmediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.

American Journal of Respiratory and Critical Care Medicine published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Computed Properties of 307510-92-5.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Rievaj, Juraj’s team published research in Pfluegers Archiv in 463 | CAS: 307510-92-5

Pfluegers Archiv published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Related Products of thiazolidine.

Rievaj, Juraj published the artcileAllergic sensitization enhances anion current responsiveness of murine trachea to PAR-2 activation, Related Products of thiazolidine, the publication is Pfluegers Archiv (2012), 463(3), 497-509, database is CAplus and MEDLINE.

Protease-activated receptor 2 (PAR-2) is a G protein-coupled receptor possibly involved in the pathogenesis of asthma. PAR-2 also modulates ion transport in cultured epithelial cells, but these effects in native airways are controversial. The influence of allergic inflammation on PAR-2-induced changes in ion transport has received little attention. Here, we studied immediate changes in transepithelial short circuit current (I sc) induced by PAR-2 activation in the tracheas of naive and allergic mice. Activation of PAR-2 with an apically added activation peptide (AP) induced a small increase in I sc, while a much larger increase was observed following basolateral AP addition In ovalbumin-sensitized and -challenged animals used as a model of allergic airway inflammation, the effect of basolateral AP addition was enhanced. Responses to basolateral AP in both naive and allergic mice were not decreased by blocking sodium absorption with amiloride or CFTR function with CFTRinh172 but were reduced by the cyclooxygenase inhibitor indomethacin and largely blocked (>80%) by niflumic acid, a calcium-activated chloride channels’ (CaCC) blocker. Allergic mice also showed an enhanced response to ATP and thapsigargin. There was no change in mRNA expression of Par-2 or of the chloride channels Ano1 (Tmem16a) and Bestrophin 2 in tracheas from allergic mice, while mRNA levels of Bestrophin 1 were increased. In conclusion, basolateral PAR-2 activation in the mouse airways led to increased anion secretion through apical CaCC, which was more pronounced in allergic animals. This could be a protective mechanism aimed at clearing allergens and defending against mucus plugging.

Pfluegers Archiv published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Related Products of thiazolidine.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Garcia, Rocio’s team published research in International Journal of Biochemistry & Cell Biology in 135 | CAS: 307510-92-5

International Journal of Biochemistry & Cell Biology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Recommanded Product: 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid.

Garcia, Rocio published the artcileCFTR chloride channel activity modulates the mitochondrial morphology in cultured epithelial cells, Recommanded Product: 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, the publication is International Journal of Biochemistry & Cell Biology (2021), 105976, database is CAplus and MEDLINE.

The impairment of the CFTR channel activity, a cAMP-activated chloride (Cl-) channel responsible for cystic fibrosis (CF), has been associated with a variety of mitochondrial alterations such as modified gene expression, impairment in oxidative phosphorylation, increased reactive oxygen species (ROS), and a disbalance in calcium homeostasis. The mechanisms by which these processes occur in CF are not fully understood. Previously, we demonstrated a reduced MTND4 expression and a failure in the mitochondrial complex I (mCx-I) activity in CF cells. Here we hypothesized that the activity of CFTR might modulate the mitochondrial fission/fusion balance, explaining the decreased mCx-I. The mitochondrial morphol. and the levels of mitochondrial dynamic proteins MFN1 and DRP1 were analyzed in IB3-1 CF cells, and S9 (IB3-1 expressing wt-CFTR), and C38 (IB3-1 expressing a truncated functional CFTR) cells. The mitochondrial morphol. of IB3-1 cells compared to S9 and C38 cells showed that the impaired CFTR activity induced a fragmented mitochondrial network with increased rounded mitochondria and shorter branches. Similar results were obtained by using the CFTR pharmacol. inhibitors CFTR(inh)-172 and GlyH101 on C38 cells. These morphol. changes were accompanied by modifications in the levels of the mitochondrial dynamic proteins MFN1, DRP1, and p(616)-DRP1. IB3-1 CF cells treated with Mdivi-1, an inhibitor of mitochondrial fission, restored the mCx-I activity to values similar to those seen in S9 and C38 cells. These results suggest that the mitochondrial fission/fusion balance is regulated by the CFTR activity and might be a potential target to treat the impaired mCx-I activity in CF.

International Journal of Biochemistry & Cell Biology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Recommanded Product: 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Billet, Arnaud’s team published research in Frontiers in Pharmacology in 8 | CAS: 307510-92-5

Frontiers in Pharmacology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Formula: C18H10F3NO3S2.

Billet, Arnaud published the artcileDevelopment of automated patch clamp technique to investigate CFTR chloride channel function, Formula: C18H10F3NO3S2, the publication is Frontiers in Pharmacology (2017), 195/1-195/10, database is CAplus and MEDLINE.

The chloride (Cl-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is defective in cystic fibrosis (CF), and mutation of its encoding gene leads to various defects such as retention of the misfolded protein in the endoplasmic reticulum, reduced stability at the plasma membrane, abnormal channel gating with low open probability, and thermal instability, which leads to inactivation of the channel at physiol. temperature Pharmacotherapy is one major therapeutic approach in the CF field and needs sensible and fast tools to identify promising compounds The high throughput screening assays available are often fast and sensible techniques but with lack of specificity. Few works used automated patch clamp (APC) for CFTR recording, and none have compared conventional and planar techniques and demonstrated their capabilities for different types of experiments In this study, we evaluated the use of planar parallel APC technique for pharmacol. search of CFTR-trafficking correctors and CFTR function modulators. Using optimized conditions, we recorded both wt- and corrected F508del-CFTR Cl- currents with automated whole-cell patch clamp and compared the data to results obtained with conventional manual whole-cell patch clamp. We found no significant difference in patch clamp parameters such as cell capacitance and series resistance between automated and manual patch clamp. Also, the results showed good similarities of CFTR currents recording between the two methods. We showed that similar stimulation protocols could be used in both manual and automatic techniques allowing precise control of temperature, classic I/V relationship, and monitoring of current stability in time. In conclusion, parallel patch-clamp recording allows rapid and efficient investigation of CFTR currents with a variety of tests available and could be considered as new tool for medium throughput screening in CF pharmacotherapy.

Frontiers in Pharmacology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Formula: C18H10F3NO3S2.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Khadijah Ramli, Nur Siti’s team published research in Steroids in 138 | CAS: 307510-92-5

Steroids published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Computed Properties of 307510-92-5.

Khadijah Ramli, Nur Siti published the artcileTestosterone enhances expression and functional activity of epithelial sodium channel (ENaC), cystic fibrosis transmembrane regulator (CFTR) and sodium hydrogen exchanger (NHE) in vas deferens of sex-steroid deficient male rats, Computed Properties of 307510-92-5, the publication is Steroids (2018), 117-133, database is CAplus and MEDLINE.

Effects of testosterone on expression and functional activity of ENaC, CFTR and NHE in vas deferens were investigated. Orchidectomized, adult male rats were given 125 and 250 μg/kg/day testosterone s.c., with or without flutamide and finasteride for seven consecutive days. At the end of the treatment, rats were anesthetized and vas deferens were perfused. Changes in vas deferens fluid secretion rate, pH, HCO3, Cl and Na+ concentrations were recorded in the presence of amiloride and Cftr inh-172. Rats were then sacrificed and vas deferens were harvested and subjected for mol. biol. anal. Testosterone treatment caused the fluid pH and HCO3 concentrations to decrease but secretion rate, Cl and Na+ concentrations to increase, where upon amiloride administration, the pH and HCO3 concentration increased but Cl and Na+ concentrations further increased. In testosterone-treated rats, administration of Cftr inh-172 caused all fluid parameters to decrease. In testosterone-treated rats co-administered with flutamide or finasteride, pH and HCO3 concentration increased but fluid secretion rate, Cl and Na+ concentrations decreased and these parameters were not affected by amiloride or Cftr inh-172 administration. Under testosterone influence, CFTR and γ-ENaC were highly expressed at the apical membrane while NHE-1 and 4 were highly expressed at the basolateral membrane of vas deferens epithelium. Meanwhile, NHE-2 and 3 were highly expressed at the apical membrane. Differential expression of ENaC, CFTR and NHE in vas deferens under testosterone influence indicated the important role of these transporters in creating optimal fluid microenvironment that is essential for preserving male fertility.

Steroids published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Computed Properties of 307510-92-5.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Harada, Yumi’s team published research in Journal of Pharmacology and Experimental Therapeutics in 362 | CAS: 307510-92-5

Journal of Pharmacology and Experimental Therapeutics published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, COA of Formula: C18H10F3NO3S2.

Harada, Yumi published the artcileMashiningan improves opioid-induced constipation in rats by activating cystic fibrosis transmembrane conductance regulator chloride channel, COA of Formula: C18H10F3NO3S2, the publication is Journal of Pharmacology and Experimental Therapeutics (2017), 362(1), 78-84, database is CAplus and MEDLINE.

Opioid receptor stimulants are analgesics used in patients with and without cancer; however, they often cause constipation, resulting in poor adherence and deterioration of the quality of life. Hence, suitable treatments for constipation are required. In this study, we investigated the pharmacol. mechanisms of action of mashiningan (MNG), a Kampo medicine used to treat constipation, and evaluated the effect of MNG on opioid-induced constipation in rats. MNG (100 or 300 mg/kg) was orally administered to normal or codeine phosphate (CPH)-induced constipation in rats, and its effect was evaluated on the basis of fecal counts, characteristics, and weight Small intestinal fluid secretion was measured after treatment with MNG alone or coadministration with a cystic fibrosis transmembrane conductance regulator (CFTR)-specific inhibitor (CFTRinh-172). The effects of MNG on the CFTR and type-2 chloride channel were determined using patch-clamp or short-circuit current experiments, resp. MNG increased the fecal weight and proportion of soft feces in normal rats. CPH-induced constipation in rats decreased fecal counts and weight, whereas MNG prevented these effects and increased the proportion of soft feces. MNG increased the electronic chloride current, and this effect was inhibited by the CFTRinh-172 in the CFTR assay. Furthermore, MNG increased small intestinal fluid secretion, and this effect was abolished by coadministration with the CFTRinh-172. MNG improved opioid-induced constipation in rats, and this improvement may have been mediated by increasing intestinal fluid secretion via CFTR chloride channel activation. Therefore, MNG is expected as a medicine of the treatment of constipation in patients taking opioids.

Journal of Pharmacology and Experimental Therapeutics published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, COA of Formula: C18H10F3NO3S2.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com

Akiba, Yasutada’s team published research in American Journal of Physiology in 289 | CAS: 307510-92-5

American Journal of Physiology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Application In Synthesis of 307510-92-5.

Akiba, Yasutada published the artcileA novel small molecule CFTR inhibitor attenuates HCO3 secretion and duodenal ulcer formation in rats, Application In Synthesis of 307510-92-5, the publication is American Journal of Physiology (2005), 289(4), G753-G759, database is CAplus and MEDLINE.

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO3) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO3] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTRinh-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTRinh-172 pretreatment 1 h before cysteamine. Superfusion of CFTRinh-172 (0.1-10 μM) over the duodenal mucosa had no effect on basal DBS but at 10 μM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTRinh-172, although basal DBS was increased at 24 h. CFTRinh-172 treatment had no effect on gastric acid or HCO3 secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTRinh-172-pretreated rats. CFTRinh-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO3 may be an important protective mechanism for duodenal epithelial cells.

American Journal of Physiology published new progress about 307510-92-5. 307510-92-5 belongs to thiazolidine, auxiliary class Membrane Transporter/Ion Channel,CFTR, name is 4-((4-Oxo-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-5-ylidene)methyl)benzoic acid, and the molecular formula is C18H10F3NO3S2, Application In Synthesis of 307510-92-5.

Referemce:
https://en.wikipedia.org/wiki/Thiazolidine,
Thiazolidine – ScienceDirect.com