Brief introduction of 171877-39-7

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various fields.

171877-39-7, (S)-4-Benzylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,171877-39-7

General procedure: To thiazolidine-2-thiones (1.0 equiv.) in THF (5.5 mL/mmol), 60% NaH dispersion in mineral oil (1.2 equiv.)was slowly added at 0 C. The reaction mixture was stirred for 15 min at 0 C before acetyl chloride (1.2 equiv.)was added dropwise. The reaction mixture was stirred for 30 min at 0 C, upon which it was warmed to roomtemperature and allowed to stir for another 2 h. The reaction was quenched with saturated NH4Cl (3 mL/mmol)and the layers were separated. The aq. layer was extracted with EtOAc (2 x 4 mL/mmol) and the combinedorganic layers were dried (Na2SO4),filtered, and concentrated in vacuo. The crude product was purified bycolumn chromatography on silica (hexanes/EtOAc 8:2) to afford the title compounds as yellow oils.

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Tungen, J¡ãrn E.; Aursnes, Marius; Hansen, Trond Vidar; Tetrahedron Letters; vol. 56; 14; (2015); p. 1843 – 1846;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Extracurricular laboratory: Synthetic route of 171877-39-7

As the rapid development of chemical substances, we look forward to future research findings about 171877-39-7

(S)-4-Benzylthiazolidine-2-thione, cas is 171877-39-7, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

Add 1000 ml of dichloromethane and 500 ml (3.6 mol) of triethylamine to a 5-liter four-necked flask.Benzylthiooxazolidinone 209g (1mol), phenylacetic acid 140g (1mol),300 g (1 mol) of 2-chloropyridine p-toluenesulfonic acid methyl salt was added dropwise1000 ml of methylene chloride solution, added, and stirred at 25 C for 5 hours.TLC showed complete reaction, adding water to extract the reaction, followed by water,The organic phase is washed with saturated brine, dried over anhydrous sodium sulfate and concentrated.Recrystallization gave 300 g of product with a yield of 91.7%.HPLC purity >99%., 171877-39-7

As the rapid development of chemical substances, we look forward to future research findings about 171877-39-7

Reference£º
Patent; Shanghai Lark Pharmaceutical Technology Co., Ltd.; Shen Xin; Yang Jidong; Hu Xiaochuan; Li Feng; (6 pag.)CN109020913; (2018); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of tetrazoloquinoline aldehyde 1a (1 mmol) and rhodanine 2a (1 mmol), 20 mol % [HDBU][HSO4] was added, and the mixture was heated on an oil bath at 80 C for 30 min. During the reaction process, the mixture was solidified and after completion of the reaction (monitored by TLC), the reaction was cooled to room temperature, water was added and stirred for 5 min. The solid obtained was removed by filtration and recrystallized from EtOH-DMF. The filtrate was dried under reduced pressure to recover ionic liquid and reused in subsequent cycles.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Subhedar, Dnyaneshwar D.; Shaikh, Mubarak H.; Nawale, Laxman; Yeware, Amar; Sarkar, Dhiman; Khan, Firoz A. Kalam; Sangshetti, Jaiprakash N.; Shingate, Bapurao B.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 9; (2016); p. 2278 – 2283;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Extracurricular laboratory: Synthetic route of 7025-19-6

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Share a compound : 7025-19-6

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.,7025-19-6

General procedure: A mixture of the selected aldehyde (0.75 mmol), 3-(2?- hydroxycarbonylethyl)-2-thioxothiazolidin-4-one (0.75 mmol, 159 mg) and anhydrous sodium acetate (2.25 mmol, 187 mg) in glacial acetic acid (0.75 mL) was thoroughly mixed in an appropriate 10 mL thick-walled glass vial. This was tightly sealed with a Teflon cap and the reaction mixture was stirred and heated at 140 C for 5 minutes, under focused microwave irradiation, with an initial power setting of 75 W. After cooling to room temperature, the yellow solid that precipitated from the crude product mixture was washed with distilled water, filtered under reduced pressure, recrystallized from dichloromethane and dried at room temperature under vacuum, yielding the desired compound as a bright-yellow solid. See, e.g., Figure 1. Yield: 83%, 215 mg; mp (C): 216-217; FT-JR (v, cm?): 3512, 3012, 1691, 1585, 1520, 1441, 1429, 1386,1314, 1253, 1218, 1171, 1152, 1106, 1075, 1025, 1005, 993, 937, 916, 873, 845, 792,734, 710, 622, 597, 566, 557, 536, 500; UV-vis (CH3OH): Xfflax, nm (relative absorbance, = 283 (70.3), 388 (100), 453 (17.2); ?H NMR (400 MHz, (CD3)2SO/CCL): oe, ppm =7.67 (1H, s, CH), 7.19 (2H, d, J= 7.6 Hz, ArH), 4.27 (2H, t, J= 7.8 Hz,NCH2CH2CO2H), 2.61 (2H, t, J= 7.8 Hz, NCH2CH2CO2H); ?3C NMR (100 MHz,(CD3)2SO/CCL): oe,ppm= 191.9, 171.1, 166.3, 152.3 (dd,J= 243.3 and 7.6 Hz), 137.1(t, J= 16.1 Hz), 131.4, 122.9 (t, J= 8.6 Hz), 120.9, 113.9 (dd, J= 15.2 and 7.4 Hz), 39.7,30.6; HR-MS (EJ): mlz = 344.9946 (M, C,3H9F2N0452 required 344.9941).

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

Reference£º
Patent; BSIM2 ? BIOMOLECULAR SIMULATIONS LDA; PONTES MEIRELES FERREIRA DE BRITO, Rui Manuel; VIEIRA SIMOES, Carlos Jose; DE VASCONCELOS DIAS DE PINHO MELO, Teresa Margarida; DA SILVA VICTOR, Bruno Lourenco; LOURENCO DE ALMEIDA, Zaida Catarina; CABRAL LOPES, Ana Lucia; OLIVEIRA NASCIMENTO, Bruno Filipe; (182 pag.)WO2016/80853; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Share a compound : 7025-19-6

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.,7025-19-6

General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 179087-93-5

179087-93-5, The synthetic route of 179087-93-5 has been constantly updated, and we look forward to future research findings.

179087-93-5, 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(Example 3) tert-Butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate Acetonitrile (400 ml) was added to 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (40.0 g, 142.2 mmol). After cooling to an internal temperature of 7C, thionyl chloride (18.4 g, 155.0 mmol) was added. Dimethylformamide (32 ml) was further added and the mixture was stirred at the same temperature to 11.4C for three hours. A solution of tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate (38.4 g, 137.9 mmol) and triethylamine (18.7 g, 184.9 mmol) in acetonitrile (240 ml) maintained at 0 to 10C was added dropwise thereto over 65 minutes while cooling to maintain the reaction temperature at 0 to 5C, and then the mixture was further stirred at the same temperature for two hours. Next, water (320 ml) was added over 15 minutes and the mixture was stirred at an internal temperature of 0 to 5C for 2.5 hours. Thereafter, the precipitated crystals were separated by filtration. The resulting crystals were washed with a 2:1 solution of acetonitrile and water (160 ml) and dried under reduced pressure at 50C for 19 hours to obtain crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate (63.6 g, 123.4 mmol) (yield: 89%).(Example 4) tert-Butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate (4-1) (The same lots of 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid and tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate as used in Example 3 were used in this example, respectively). Acetonitrile (400 ml) was added to 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (40.0 g, 142.2 mmol). After cooling to an internal temperature of 8C, thionyl chloride (18.4 g, 155.0 mmol) was added. Dimethylformamide (32 ml) was further added and the mixture was stirred at the same temperature to 12C for three hours. A solution of tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate (38.4 g, 137.9 mmol) and triethylamine (18.7 g, 184.9 mmol) in acetonitrile (240 ml) maintained at 0 to 10C was added dropwise thereto over 65 minutes while cooling to maintain the reaction temperature at 0 to 3C, and then the mixture was further stirred at the same temperature for 3.5 hours. Next, water (320 ml) was added over 27 minutes and the mixture was stirred at 0 to 5C for 2.5 hours. Thereafter, the precipitated crystals were separated by filtration. The resulting crystals were washed with a 2:1 solution of acetonitrile and water (160 ml) and then dried under reduced pressure at 50C for 15 hours to obtain crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate (67.6 g, 131.0 mmol) (yield: 92%).(4-2) A suspension of the crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate obtained in (4-1) (56.1 g, 108.6 mmol) in methanol (1680 ml) was heated with stirring (the crystals were completely dissolved when the internal temperature reached 65.5C). The reaction solution was cooled to 0 to 5C over two hours and further stirred at the same temperature for 95 minutes, and then the precipitated crystals were separated by filtration. The resulting crystals were washed with methanol (224 ml) and then dried under reduced pressure at 50C for 15 hours to obtain purified crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate (51.6 g, 100.0 mmol) (yield: 92%, total yield: 85%).(Example 6) {5-4-[(6-Methoxy-1-methyl-1H-benzimidazol-2-yl)methoxy]benzyl}thiazolidine-2,4-dione hydrochloride (6-1) Acetonitrile (140.9 kg) was added to 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (18.0 kg, 64.0 mol). After cooling to an internal temperature of 8C, thionyl chloride (8.3 kg, 69.8 mol) was added. Dimethylformamide (14.4 L) was further added and the mixture was stirred at the same temperature to 15C for 3.5 hours. A solution of tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate (15.7 kg, 62.2 mol) and triethylamine (8.4 kg, 83.0 mol) in acetonitrile (84.6 kg) maintained at 0 to 10C was added dropwise thereto over one hour while cooling to maintain the reaction temperature at 0 to 5C, and then the mixture was further stirred at the same temperature for two hours. Next, water (144 L) was added over 22 minutes, and the mixture was stirred for 30 minutes while maintaining the internal temperature at 0 to 6C and then allowed to stand for 12 hours. The resulting crystals were separated by filtration and then washed with a 2:1 solution of water (54 L) to obtain wet crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate.(6-2) A suspension of the wet crystals of tert-butyl N-{2-{4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-m…

179087-93-5, The synthetic route of 179087-93-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP1894929; (2008); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of 7025-19-6

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

A common heterocyclic compound, the thiazolidine compound, name is 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,cas is 7025-19-6, mainly used in chemical industry, its synthesis route is as follows.

7025-19-6, General procedure: To a mixture of 5-chloroisatin (182 mg, 1.0 mmol) and N-carboxyethylrhodanine (205 mg, 1.0 mmol) was added DMSO-d6 (3.0 mL). The reaction was followed by proton NMR until the disappearance of the starting material.

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Xue, Fengtian; MacKerell Jr., Alexander D.; Heinzl, Geoffrey; Hom, Kellie; Tetrahedron Letters; vol. 54; 13; (2013); p. 1700 – 1703;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Share a compound : 7025-19-6

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.,7025-19-6

The above-prepared compound A29 and 1.1 equivalents of rhodamine 3-propionic acid were dissolved in ethanol, one equivalent of pyridine was added, and the reaction was carried out at 80 C. for 4 hours. After the reaction was completed, the mixture was cooled to room temperature to precipitate a yellow solid, which was filtered by suction and used as a filter cake. After washing with dilute hydrochloric acid, washing with water, infrared drying, and recrystallization from ethanol gave a yellow solid with a yield of 81%.

With the rapid development of chemical substances, we look forward to future research findings about 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

Reference£º
Patent; Guangdong University of Technology; Du Zhiyun; Li Penghui; Jiang Hong; Zhang Wenjin; Chen Huixiong; Dong Changzhi; Zheng Xi; Zhang Kun; (35 pag.)CN107698579; (2018); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com