Patterson, Jenelle A. et al. published their research in Biochemical Journal in 2020 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Synthetic Route of C4H7NO2S

Thioproline formation as a driver of formaldehyde toxicity in Escherichia coli was written by Patterson, Jenelle A.;He, Hai;Folz, Jacob S.;Li, Qiang;Wilson, Mark A.;Fiehn, Oliver;Bruner, Steven D.;Bar-Even, Arren;Hanson, Andrew D.. And the article was included in Biochemical Journal in 2020.Synthetic Route of C4H7NO2S This article mentions the following:

Formaldehyde (HCHO) is a reactive carbonyl compound that formylates and cross-links proteins, DNA, and small mols. It is of specific concern as a toxic intermediate in the design of engineered pathways involving methanol oxidation or formate reduction The interest in engineering these pathways is not, however, matched by engineering-relevant information on precisely why HCHO is toxic or on what damage-control mechanisms cells deploy to manage HCHO toxicity. The only well-defined mechanism for managing HCHO toxicity is formaldehyde dehydrogenase-mediated oxidation to formate, which is counterproductive if HCHO is a desired pathway intermediate. We therefore sought alternative HCHO damage-control mechanisms via comparative genomic anal. This anal. associated homologs of the Escherichia coli pepP gene with HCHO-related one-carbon metabolism Furthermore, deleting pepP increased the sensitivity of E. coli to supplied HCHO but not other carbonyl compounds PepP is a proline aminopeptidase that cleaves peptides of the general formula X-Pro-Y, yielding X + Pro-Y. HCHO is known to react spontaneously with cysteine to form the close proline analog thioproline (thiazolidine-4-carboxylate), which is incorporated into proteins and hence into proteolytic peptides. We therefore hypothesized that certain thioproline-containing peptides are toxic and that PepP cleaves these aberrant peptides. Supporting this hypothesis, PepP cleaved the model peptide Ala-thioproline-Ala as efficiently as Ala-Pro-Ala in vitro and in vivo, and deleting pepP increased sensitivity to supplied thioproline. Our data thus (i) provide biochem. genetic evidence that thioproline formation contributes substantially to HCHO toxicity and (ii) make PepP a candidate damage-control enzyme for engineered pathways having HCHO as an intermediate. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Synthetic Route of C4H7NO2S).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Synthetic Route of C4H7NO2S

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Barakat, Assem et al. published their research in Bioorganic Chemistry in 2019 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Formula: C4H7NO2S

Design and synthesis of new substituted spirooxindoles as potential inhibitors of the MDM2-p53 interaction was written by Barakat, Assem;Islam, Mohammad Shahidul;Ghawas, Hussien Mansur;Al-Majid, Abdullah Mohammed;El-Senduny, Fardous F.;Badria, Farid A.;Elshaier, Yaseen A. M. M.;Ghabbour, Hazem A.. And the article was included in Bioorganic Chemistry in 2019.Formula: C4H7NO2S This article mentions the following:

The designed compounds, 4a-p, were synthesized using a simple and smooth method with an asym. 1,3-dipolar reaction as the key step. The chem. structures for all synthesized compounds were elucidated and confirmed by spectral anal. The mol. complexity and the absolute stereochem. of 4b and 4e designed analogs were determined by X-ray crystallog. anal. The anticancer activities of the synthesized compounds were tested against colon (HCT-116), prostate (PC-3), and hepatocellular (HepG-2) cancer cell lines. Mol. modeling revealed that the compound 4d binds through hydrophobic-hydrophobic interactions with the essential amino acids (LEU: 57, GLY: 58, ILE: 61, and HIS: 96) in the p53-binding cleft, as a standard p53-MDM2 inhibitor (6SJ). The mechanism underlying the anticancer activity of compound 4d was further evaluated, and the study showed that compound 4d inhibited colony formation, cell migration, arrested cancer cell growth at G2/M, and induced apoptosis through intrinsic and extrinsic pathways. Transactivation of p53 was confirmed by flow cytometry, where compound 4d increased the level of activated p53 and induced mRNA levels of cell cycle inhibitor, p21. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Formula: C4H7NO2S).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Formula: C4H7NO2S

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Muthuselvi, C. et al. published their research in IUCrData in 2018 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Formula: C4H7NO2S

Ethyl 6′-cyano-7′-phenyl-1′,6′,7′,7a′-tetrahydro-3′H-spiro[indeno[1,2-b]quinoxaline-11,5′-pyrrolo[1,2-c]thiazole-6′-carboxylate was written by Muthuselvi, C.;Athimoolam, S.;Srinivasan, N.;Ravikumar, B.;Pandiarajan, S.;Krishnakumar, R. V.. And the article was included in IUCrData in 2018.Formula: C4H7NO2S This article mentions the following:

In the title compound, C22H22ClN4O2S, the angle between the mean planes of the indene ring and the quinoxaline ring system is 3.93 (11)°. The five-membered indene and thiazole rings both adopt envelope conformations while the pyrrole ring adopts a twisted conformation. The two acceptor O atoms form a chelated three-centered hydrogen bond with a Ph C atom. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Formula: C4H7NO2S).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Formula: C4H7NO2S

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Chen, Liang et al. published their research in Organic & Biomolecular Chemistry in 2016 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. Thiazolidine-2,4-dione (TZD) is an important derivative of thiazolidine with a sulfur and nitrogen atom in positions 1 and 3, and carbonyl in position 4 of the ring. These derivatives have a wide range of medicinal applications such as antiviral, antimicrobial, anticonvulsant, antiinflammatory, and antimalarial activities.Computed Properties of C4H7NO2S

Molecular diversity of the three-component reaction of α-amino acids, dialkyl acetylenedicarboxylates and N-substituted maleimides was written by Chen, Liang;Sun, Jing;Xie, Ju;Yan, Chao-Guo. And the article was included in Organic & Biomolecular Chemistry in 2016.Computed Properties of C4H7NO2S This article mentions the following:

The one-pot three-component reaction of secondary α-amino acids, including proline, thiazolidine-4-carboxylic acid, piperidine-2-carboxylic acid and sarcosine with dialkyl acetylenedicarboxylate and N-substituted maleimides in refluxing ethanol afforded functionalized pyrrolo[3,4-a]pyrrolizines, pyrrolo[3′,4′:3,4]pyrrolo[1,2-c]thiazoles, pyrrolo[3,4-a]indolizines and octahydropyrrolo[3,4-c]pyrroles in good yields and with high diastereoselectivity. On the other hand, the similar three-component reaction containing primary α-amino acids, such as glycine, alanine, phenylalanine and leucine, with N-substituted maleimides and two mols. of dialkyl acetylenedicarboxylate gave the corresponding (hexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)maleates. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Computed Properties of C4H7NO2S).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. Thiazolidine-2,4-dione (TZD) is an important derivative of thiazolidine with a sulfur and nitrogen atom in positions 1 and 3, and carbonyl in position 4 of the ring. These derivatives have a wide range of medicinal applications such as antiviral, antimicrobial, anticonvulsant, antiinflammatory, and antimalarial activities.Computed Properties of C4H7NO2S

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Yavari, Issa et al. published their research in Synlett in 2018 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Related Products of 444-27-9

A Convenient Synthesis of Fused Tetrahydroazocines from Acenaphthylene-1,2-dione, Proline, and Acetylenic Esters was written by Yavari, Issa;Baoosi, Leila;Halvagar, Mohammad Reza. And the article was included in Synlett in 2018.Related Products of 444-27-9 This article mentions the following:

A synthesis of dialkyl (12E,14E)-7-oxo-10,11-dihydro-7H,9H-azocino[2,1-a]benzo[de]isoquinoline-13,14-dicarboxylates through a 1,3-dipolar cycloaddition reaction of azomethine ylides, generated in situ from proline and acenaphthylene-1,2-dione, with dialkyl acetylenedicarboxylates is described. According to the X-ray diffraction data, the tetrahydroazocine ring has a rigid twist-boat form with approx. local C2 symmetry. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Related Products of 444-27-9).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Related Products of 444-27-9

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Shiraiwa, Tadashi et al. published their research in Chemical & Pharmaceutical Bulletin in 1999 | CAS: 16310-13-7

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Thiazolidine is an important scaffold and has a wide range of promising biological activities. Thiazolidine derivatives have reported anti-inflammatory and anti-nociceptive activity. In addition, the use of thiazolidines as an inhibitor of tyrosyl-DNA phosphodiesterase Iand influenza neuraminidase, pro-drugs for the treatment of cystinosis, radioprotective against γ-irradiation and as S1P1 receptor agonist has also been reported.Application of 16310-13-7

Preparation of optically active 2-thiazolidinecarboxylic acid by asymmetric transformation was written by Shiraiwa, Tadashi;Katayama, Takashi;Ishikawa, Joji;Asai, Takeshi;Kurokawa, Hidemoto. And the article was included in Chemical & Pharmaceutical Bulletin in 1999.Application of 16310-13-7 This article mentions the following:

Cysteamine was condensed with glyoxylic acid monohydrate in a mixture of acetic acid and ethanol in the presence of (2R,3R)- or (2S,3S)-tartaric acid [(R)- or (S)-TA], as the resolving agent, to give the salt of (-)-2-thiazolidinecarboxylic acid [(-)-2-THC] with (R)-TA or the salt of (+)-2-THC with (S)-TA. Treatment of these salts with triethylamine in methanol afforded (-)- and (+)-2-THC, I and II resp. I and II were determined to be enantiopure forms by comparing their powder X-ray diffraction patterns with that of (RS)-2-THC. The absolute configurations of I and II were estimated based on molar rotations of (2R,4R)- and (2S,4R)-2,4-thiazolidinedicarboxylic acids, (R)-4-thiazolidinecarboxylic acid, and I and II. I was determined to have the (R)-configuration with II having the (S)-configuration. In the experiment, the researchers used many compounds, for example, Thiazolidine-2-carboxylic acid (cas: 16310-13-7Application of 16310-13-7).

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Thiazolidine is an important scaffold and has a wide range of promising biological activities. Thiazolidine derivatives have reported anti-inflammatory and anti-nociceptive activity. In addition, the use of thiazolidines as an inhibitor of tyrosyl-DNA phosphodiesterase Iand influenza neuraminidase, pro-drugs for the treatment of cystinosis, radioprotective against γ-irradiation and as S1P1 receptor agonist has also been reported.Application of 16310-13-7

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Liu, Jingjing et al. published their research in Journal of Agricultural and Food Chemistry in 2016 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. In the thiazolidine nucleus, a large number of substitutions are possible on 2, 4 and 5 positions responsible for enhancing the compound’s pharmaceutical importance. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Related Products of 444-27-9

Quantitation of Thioprolines in Grape Wine by Isotope Dilution-Liquid Chromatography-Tandem Mass Spectrometry was written by Liu, Jingjing;Meng, Xiangpeng;Wan, Chan. And the article was included in Journal of Agricultural and Food Chemistry in 2016.Related Products of 444-27-9 This article mentions the following:

Cysteine reacts with reactive carbonyls to form thioprolines, which have been demonstrated to possess various pharmaceutical properties. Therefore, thioproline formation is considered as a major detoxification pathway for carcinogenic reactive carbonyls. In this study, we report the initial identification of thiazolidine-4-carboxylic acid (1) and 2-methylthiazolidine-4-carboxylic acid (2), two very common thioprolines, formed by reacting formaldehyde and acetaldehyde with cysteine in grape wine samples. We have developed an isotope dilution-liquid chromatog.-tandem mass spectrometry method featuring high sensitivity (limit of detection of ≤1.5 ng/mL) and selectivity to quantitate compounds 1 and 2. The method after validated to be highly accurate (recovery of ≥92%) and precise [intraday relative standard deviation (RSD) of ≤4.1% and interday RSD of ≤9.7%] was applied to determine the varying compound 1 and 2 contents in grape wine samples. Results revealed the grape type and storage duration-dependent formation of thioprolines in grape wines. Overall, the results are expected to facilitate compound-dependent investigations of the health benefits of grape wine, and our findings could be adopted to predict the age of grape wine. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9Related Products of 444-27-9).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. In the thiazolidine nucleus, a large number of substitutions are possible on 2, 4 and 5 positions responsible for enhancing the compound’s pharmaceutical importance. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.Related Products of 444-27-9

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Fichman, Yosef et al. published their research in Plant Science (Shannon, Ireland) in 2018 | CAS: 444-27-9

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine is a heterocyclic compound with five-membered saturated ring with a thioether group and an amine group in 1 and 3 positions of the ring. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.HPLC of Formula: 444-27-9

SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana was written by Fichman, Yosef;Koncz, Zsuzsa;Reznik, Noam;Miller, Gad;Szabados, Laszlo;Kramer, Katharina;Nakagami, Hirofumi;Fromm, Hillel;Koncz, Csaba;Zilberstein, Aviah. And the article was included in Plant Science (Shannon, Ireland) in 2018.HPLC of Formula: 444-27-9 This article mentions the following:

The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analog thioproline (T4C), identified mutant alleles of the plant SELO homolog in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced Me viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses. In the experiment, the researchers used many compounds, for example, Thiazolidine-4-carboxylic acid (cas: 444-27-9HPLC of Formula: 444-27-9).

Thiazolidine-4-carboxylic acid (cas: 444-27-9) belongs to thiazolidine derivatives. Thiazolidine is a heterocyclic compound with five-membered saturated ring with a thioether group and an amine group in 1 and 3 positions of the ring. Thiazolidine and its composites are key components of many natural products and drugs , and are also present in many synthetic compounds such as anticancer, anti-inflammatory, antitubercular, antifungal, antiviral, anti-HIV, cytotoxicity, antitrypanosomal, antinociceptive and anti-hypernociceptive compounds.HPLC of Formula: 444-27-9

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Lalezari, Iraj et al. published their research in Journal of Medicinal Chemistry in 1988 | CAS: 16310-13-7

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. In addition, the use of thiazolidines as an inhibitor of tyrosyl-DNA phosphodiesterase Iand influenza neuraminidase, pro-drugs for the treatment of cystinosis, radioprotective against γ-irradiation and as S1P1 receptor agonist has also been reported.Quality Control of Thiazolidine-2-carboxylic acid

Synthesis and antineoplastic activity of 5-aryl-2,3-dihydropyrrolo[2,1-b]thiazole-6,7-dimethanol 6,7-bis(isopropylcarbamates) was written by Lalezari, Iraj;Schwartz, Edward L.. And the article was included in Journal of Medicinal Chemistry in 1988.Quality Control of Thiazolidine-2-carboxylic acid This article mentions the following:

A series of title compounds I (R = Ph, 4-FC6H4, 4-ClC6H4, 3,4-Cl2C6H3, X = S), the 1-thia analogs of I (R = 3,4-Cl2C6H3, X = CH2) (II) were prepared by multistep syntheses from thiazolidine-2-carboxylic acid. The compounds were tested for growth inhibitory activity with the HL-60 human promyelocytic leukemia cell line. Three of the compounds had antileukemic activity equal to that of II, while I (R = 4-ClC6H4, X = S) was approx. 75% more potent. A simple aromatic derivative, 1,2-(Me2CHNHCO2CH2)2C6H4 had no activity in this system. Antitumor activity was also tested in a colony formation assay with HT-29 human colon carcinoma cells. I reduced relative cell survival by over 3 logs at a concentration of 300 μM (2-h exposure), while a comparable inhibition was observed with 150 μM II. In the experiment, the researchers used many compounds, for example, Thiazolidine-2-carboxylic acid (cas: 16310-13-7Quality Control of Thiazolidine-2-carboxylic acid).

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. In addition, the use of thiazolidines as an inhibitor of tyrosyl-DNA phosphodiesterase Iand influenza neuraminidase, pro-drugs for the treatment of cystinosis, radioprotective against γ-irradiation and as S1P1 receptor agonist has also been reported.Quality Control of Thiazolidine-2-carboxylic acid

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com

Fitzpatrick, Paul F. et al. published their research in Journal of Biological Chemistry in 1982 | CAS: 16310-13-7

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine is prepared as it was in its first reported synthesis, by the condensation of cysteamine and formaldehyde. Other thiazolidines may be synthesized by similar condensations. A notable derivative is 4-carboxythiazolidine, derived from formaldehyde and cysteine.Recommanded Product: 16310-13-7

Thiazolidine-2-carboxylic acid, an adduct of cysteamine and glyoxylate, as a substrate for D-amino acid oxidase was written by Fitzpatrick, Paul F.;Massey, Vincent. And the article was included in Journal of Biological Chemistry in 1982.Recommanded Product: 16310-13-7 This article mentions the following:

A mixture of cysteamine and glyoxylate, proposed by G. A. Hamilton, et al. (1979) to form the physiol. substrate of hog kidney D-amino acid oxidase (I), was confirmed to act as a good substrate for the pure enzyme. As proposed by those workers, it was shown that the actual substrate is thiazolidine-2-carboxylic acid (II), formed from cysteamine and glyoxylate with a 2nd-order rate constant of 84 min-1 M-1 at 37°, pH 7.5. Steady state kinetic anal. revealed that II was a better substrate at pH 8.5 than at pH 7.5. At both pH values, the catalytic turnover number was similar to that obtained with D-proline. I was rapidly reduced by II to form a reduced enzyme-imino acid complex, as is typical with I substrates. The product of oxidation was shown by NMR to be Δ2-thiazoline-2-carboxylic acid. Racemic II was completely oxidized by I. The directly measured rate of isomerization of LII to the D-isomer was compared to the rate of oxidation of the L-isomer by I. Their identity over the temperature range 2-30° established that the apparent activity with the L-amino acid can be explained quant. by the rapid, prior isomerization to DII. In the experiment, the researchers used many compounds, for example, Thiazolidine-2-carboxylic acid (cas: 16310-13-7Recommanded Product: 16310-13-7).

Thiazolidine-2-carboxylic acid (cas: 16310-13-7) belongs to thiazolidine derivatives. Derivatives, thiazolidines, are known. For example, the drug pioglitazone contains a thiazolidine ring. Another drug that contains a thiazolidine ring is the antibiotic penicillin. Thiazolidine is prepared as it was in its first reported synthesis, by the condensation of cysteamine and formaldehyde. Other thiazolidines may be synthesized by similar condensations. A notable derivative is 4-carboxythiazolidine, derived from formaldehyde and cysteine.Recommanded Product: 16310-13-7

Referemce:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com