Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 24; 3,3-Difluoro-cyclobutanecarboxylic Acid ((S)-3-{5-[2-(1,1-dioxo-1lambda6-isothiazolidin-2-yl)-4,6-dimethyl-pyrimidine-5-carbonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-1-phenyl-propyl)-amide (I-49); step 1-; A solution of isothiazolidine 1,1-dioxide (114, 40 mg, 0.33 mmol; CAS Reg No. 5908-62-3) in THF (0.4 mL) and DMF (0.4 mL) was treated with NaH (14 mg, 60% dispersion in mineral oil) and heated to 80 C. for 5 min before a solution of 84 (116 mg, 0.27 mmol) in DMF (1.6 mL) was added. The reaction mixture was stirred at 80 C. for 5 min, allowed to cool to RT, quenched by the addition of water, extracted with EtOAc, dried (Na2SO4) and concentrated in vacuo. The residue was purified by SiO2 column chromatography eluting with DCM:MeOH:NH4OH (60/10/1) to afford 115 mg (90%) of 115a.

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; Lemoine, Remy; Melville, Chris Richard; Rotstein, David Mark; Wanner, Jutta; US2007/191335; (2007); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

1,2-thiazolidine 1,1-dioxide (0.031 g, 0.259 mmol) in dimethylformamide (1 mL) was treated with 60% sodium hydride (0.012g, 0.518 mmol, 0.021 g of a 60%> in oil dispersion). The reaction mixture was stirred for 5 min. To this solution was added Example 41b (0.05 g, 0.086 mmol). The reaction mixture was stirred at room temperature for 2 hours. 2 N NaOH (1 mL) was added and the reaction mixture was heated at 65 C for 2 hours. After cooling to room temperature, the reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted with additional ethyl acetate twice. The combined organic layers were washed with brine, dried over MgSC^, filtered, and concentrated. The residue was purified by preparative HPLC (CI 8, 10-80% acetonitrile in 0.1% TFA water) to afford 0.025 g (64%) of the title compound. 1H NMR (500 MHz, DMSO-d6) delta 2.21-2.25 (m, 2H), 3.15 (t, J=6.97 Hz, 2H), 3.23-3.27 (m, 2H), 3.50 (s, 3H), 4.13 (s, 2H), 6.25-6.26 (m, 1H), 6.88 (d, J=7.63 Hz, 2H), 7.00 (d, J=8.54 Hz, 1H), 7.03-7.05 (m, 1H), 7.25-7.30 (m, 4H), 7.34 (dd, J=8.39, 2.29, 1H), 7.48 (d, J=2.44 Hz, 1H), 12.00 (s, 1 H). MS (ESI+) m/z 450.2 (M+H)+.

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ABBVIE INC.; ABBOTT LABORATORIES TRADING (SHANGHAI) COMPANY, LTD.; WANG, Le; PRATT, John K.; MCDANIEL, Keith F.; DAI, Yujia; FIDANZE, Steven D.; HASVOLD, Lisa; HOLMS, James H.; KATI, Warren M.; LIU, Dachun; MANTEI, Robert A.; MCCLELLAN, William J; SHEPPARD, George S.; WADA, Carol K.; WO2013/97601; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 2-((S)-3-((S)-1-(4-bromophenyl)ethyl)-2-oxo-6-phenyl-1,3-oxazinan-6-yl)ethyl-methanesulfonate (360 mg, 0.75 mmol) and K2CO3 (207 mg, 1.5 mmol) in acetonitrile (10 mL) was added isothiazolidine 1,1-dioxide (121 mg, 4.6 mmol), and the mixture was refluxed overnight. The mixture was filtered and the filtrate was concentrated to give the crude product, which was purified by preparative HPLC to afford compound (S)-3-((S)-1-(4-bromophenyl)ethyl)-6-(2-(1,1-dioxo-isothiazolidin-2-yl)ethyl)-6-phenyl-1,3-oxazinan-2-one (2.43 mg, 1%). LC-MS Method 2 tR=1.37 min, m/z=509, 507. 1H NMR (CDCl3): 1.48 (t, 3H), 2.05-2.41 (m, 7H), 2.71-2.92 (m, 2H), 3.11 (m, 3H), 3.21 (m, 2H), 5.58 (m, 1H), 6.73 (d, 2H), 7.18 (m, 1H), 7.23 (m, 3H); 7.35 (m, 3H).

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Vitae Pharmaceuticals, Inc.; Boehringer Ingelheim International GmbH; US2010/331320; (2010); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 26364-65-8

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo. 3-(2-methylbenzyl)thiazolidin-2-ylidene-cyanamide (1)white solid, yield: 0.494 g (85.4%), m.p.: 115-16 C. 1HNMR (400 MHz, CDCl3):delta (ppm) 2.34 (s, 3H, CH3),3.32 (t,J = 7.6 Hz, 2H, NCH2),3.74 (t, 2H, J = 7.6 Hz, SCH2),4.57(s, 2H, CH2),7.14-7.19 (m, 2H, Ph). IR (KBr disc, cm-1):2918, w, nu(CH); 2182, s, 2160 sh, v(C?N); 1573, s, v(C=N).

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

100 mg (0.231 mmol) of (¡À)-1-(4-bromophenyl)-7,8-dimethoxy-N,4-dimethyl-4,5-dihydro-3H-2,3-benzodiazepine-3-carboxamide (Example 49A), 33.6 mg (0.278 mmol) of 1,2-thiazolidine 1,1-dioxide (CAS [5908-62-3]), 64 mg (0.46 mmol) of potassium carbonate and 13 mg (0.023 mmol) of allylchloropalladium dimer (CAS [12012-95-2]) are charged in 3 ml of 2-methyltetrahydrofuran and the suspension is degassed with argon for 10 min. Then 39 mg (0.093 mmol) of di-tert-butyl(2?,4?,6?-triisopropylbiphenyl-2-yl)phosphane (CAS [564483-19-8]) are added, degassing with argon is carried out again, and the mixture is heated at 80 C. for 16 h. The crude mixture is filtered, and then the solvent is removed and the residue obtained is purified by preparative HPLC. This gave 32 mg (29% of theory) of the desired product as a solid.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; SIEGEL, STEPHAN; BAURLE, STEFAN; CLEVE, ARWED; HAENDLER, BERNARD; FERNANDEZ-MONTALVAN, AMAURY ERNESTO; MONNING, URSULA; KRAUSE, SABINE; LEJEUNE, PASCALE; SCHMEES, NORBERT; BUSEMANN, MATTHIAS; HOLTON, SIMON; KUHNKE, JOACHIM; (434 pag.)JP2015/529192; (2015); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

108371 To a solution of isothiazolidine 1,1-dioxide (500 mg, 4.13 mmol) in acetonitrile (10 mL) was added potassium carbonate (1.14 g, 8.25 mmol), 4-methoxybenzyl chloride (646 mg, 4.13 mmol). The mixture was heated to 80 C for 12 h under nitrogen atmosphere. The mixture was poured into H20 (50 mL) and extracted with ethyl acetate (50 mL). The organic layer was washed with H20 (50 mL x 2) and saturated brine solution (50 mL). The organic layers was dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified via flash silica chromatography (solvent gradient: 0-40% ethyl acetate in petroleum ether) to yield 1.0 g (99% yield) of the title compound as a white solid. ?H NMR (400 MHz, CDC13) oe 7.28 (d, J= 8.4 Hz, 2H), 9.89 (d, J= 8.8 Hz, 2H), 4.13 (s, 2H), 3.82 (s, 3H), 3.23 – 3.18 (t,J= 8.8 Hz, 2H), 3.12-3.07 (m, 2H), 2.34-2.25 (m, 2H).

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; GENENTECH, INC.; THE REGENTS OF THE UNIVERSITY OF CALIFORNIA; BRAUN, Marie-Gabrielle; GIBBONS, Paul; LEE, Wendy; LY, Cuong; RUDOLPH, Joachim; SCHWARZ, Jacob; ASHKENAZI, Avi; FU, Leo; LAI, Tommy; WANG, Fei; BEVERIDGE, Ramsay; ZHAO, Liang; (652 pag.)WO2018/166528; (2018); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 1438-16-0

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

1438-16-0, 3-Aminorhodanine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of isatin (1, 100.0 mg, 0.68 mmol) in ethanol (10 mL)was added slowly to the solution of 3-amino-rhodanine (2, 100,7 mg,0.68 mmol) using dropwise. The reaction mixture was stirred forovernight at room temperature without catalyst, and was monitored byTLC. After the completion of the reaction, the red product formed wasrecrystallized from ethanol, filtered, and dried in vacuo. After recrystallization,3 (162 mg, 86%), which is E isomer, was obtained asdark yellow solid (m.p. > 300 C). 1H-NMR (400 MHz, DMSO-d6): delta11.34 (s, NH, 1 H), 8.68 (d, J =7.6 Hz, =CH, 1 H), 7.83 (d, J=7.6 Hz, =CH, 1 H), 7.62 (t, J =7.6 Hz, =CH, 1 H), 7.18 (t, J=7.6 Hz, =CH, 1 H), 4.22 (s, CH2, 2 H); 13C-NMR (100 MHz, DMSOd6):delta 193.4, 169.5, 165.0, 146.3, 134.7, 130.1, 129.3, 123.7, 121.9,34.2 (Fig. S3).

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Bayindir, Sinan; Journal of Photochemistry and Photobiology A: Chemistry; vol. 372; (2019); p. 235 – 244;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 14446-47-0

14446-47-0 Thiazolidine hydrochloride 12444283, athiazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14446-47-0,Thiazolidine hydrochloride,as a common compound, the synthetic route is as follows.

Example 58 1-(4-bromophenyl)-3-(3-thiazolidinyl)propan-1-one 12.56 g (0.1 mol) of thiazolidine hydrochloride, 19.9 (0.1 mol) of 4-bromoacetophenone, 12 ml of 36% formaldehyde solution (0.144 mol), 30 ml of ethanol and 5 drops of concentrated hydrochloric acid are mixed and then heated. After a short reflux period, a homogenous solution is formed. After 7 hours boiling, the solution is evaporated, the oily residue is poured into 1000 ml of acetone under stirring and the precipitated starting material is filtered off. After evaporating the filtrate, the residue is recrystallized from ethanol or methanol to give the hydrochloride salt of the title compound, m.p.: 170C.

14446-47-0 Thiazolidine hydrochloride 12444283, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; RICHTER GEDEON VEGYESZETI GYAR R.T.; EP411775; (1991); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com