New learning discoveries about 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of tetrazoloquinoline aldehyde 1a (1 mmol) and rhodanine 2a (1 mmol), 20 mol % [HDBU][HSO4] was added, and the mixture was heated on an oil bath at 80 C for 30 min. During the reaction process, the mixture was solidified and after completion of the reaction (monitored by TLC), the reaction was cooled to room temperature, water was added and stirred for 5 min. The solid obtained was removed by filtration and recrystallized from EtOH-DMF. The filtrate was dried under reduced pressure to recover ionic liquid and reused in subsequent cycles.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Subhedar, Dnyaneshwar D.; Shaikh, Mubarak H.; Nawale, Laxman; Yeware, Amar; Sarkar, Dhiman; Khan, Firoz A. Kalam; Sangshetti, Jaiprakash N.; Shingate, Bapurao B.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 9; (2016); p. 2278 – 2283;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

Example 10.Lambdar-[(2,6-Dimethylphenyl)methyl]-6-(l,l-dioxido-2-isothiazolidinyl)-2,3- dimethylimidazo[l,2-alpha]pyridin-8-amine hydrochlorideA mixture of 6-bromo-N-[(2,6-dimethylphenyl)methyl]-2,3-dimethylimidazo[ 1 ,2- alpha]pyridin-8-amine (100 mg, 0.28 mmol; WO 98/37080), isothiazolidine 1,1 -dioxide (67 mg, 0.56 mmol; WO 04/050619), copper(I) iodide (16 mg, 0.083 mmol), potassium carbonate (138 mg, 1.0 mmol) and N,N’-dimethylethylenediamine (7.4 mg, 0.083mmol) in dioxane (2 mL) was heated in an Initiator Microwave Synthesizer at 14O0C for 12 hours. The cooled mixture was applied to an Isolute SCX cartridge. Elution with methanol, followed by water, then methanol then IM NH3 in methanol gave, after evaporation, the product which was further purified by chromatography on EPO silica gel. Elution with dichloromethane/methanol (0 to 10%) gave a pale yellow solid which was dissolved in dichloromethane (2 mL), Ethereal HCl (IM; LOmL) was added and the solvent evaporated. The residue was triturated under ether (1 mL) and filtered to give the title compound as a colourless solid; MS (ES+ve): [M+H]+ at m/z 399 (C2IH26N4O2S requires [M+H]+ at m/z 399).

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2007/3386; (2007); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0831] Preparation Example 231: Preparation of methyl 2-(1,1-dioxo-1lambda6-isothiazolidin-2-yl)pyrimidine-5-carboxylate[0832][0833] Methyl 2-chloropyrimidine-5-carboxylate (173 mg) and isothiazolidine 1,1-dioxide (145 mg) were dissolved inN,N-dimethylformamide (1 mL), and sodium hydride (48mg, 60% in oil) was added under ice-cooling. After stirring atroom temperature for 6 hr, water was added, and the mixture was extracted with ethyl acetate. The solvent was evaporated,diisopropyl ether and ethyl acetate were added, and the precipitated solid was collected by filtration to give thetitle compound (185 mg).MS(ESI)m/z:258(M+H)+.

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; Mitsubishi Tanabe Pharma Corporation; MAEDA, Kazuhiro; ENDOH, Jun-ichi; TARAO, Akiko; TASHIRO, Kaoru; ISHIBUCHI, Seigo; HIKAWA, Hidemasa; EP2565182; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 1438-16-0

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.

General procedure: O-phenylenediamines (0.065 mol) was heated with N-aminorhodanine (0.065 mol) in xylene (50 ml) for 5 hours. The obtained residue was filtered and was crystallized from aqueous alcohol (charcoal). The obtained solid was recrystallized in ethanol.

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

Reference£º
Article; El Kihel; Ait Sir; Jebbari; Ahbala; Guesmi; Bauchat; Oriental Journal of Chemistry; vol. 32; 4; (2016); p. 1765 – 1768;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 1438-16-0

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.

General procedure: A solution in absolute ethanol (30 mL/mmol) of the adequate aldehyde (1 equiv) and hydrazine (1 equiv) was heated under reflux for 5-18 h depending on the reactants. After cooling to room temperature, the precipitated solid was collected by filtration and dried under vacuum to afford the corresponding hydrazone. If no precipitate was observed, the reaction mixture was concentrated under reduced pressure. 4.2.24 (E)-3-(4-Hydroxy-3,5-dimethoxybenzylideneamino)-2-thioxothiazolidin-4-one (1g) Yellow solid, yield: 70.5%, mp: 175-177 C. IR (neat) numax: 3486, 1733, 1616, 1588 cm-1. 1H NMR (300 MHz, DMSO-d6) delta: 3.82 (s, 6H); 4.35 (s, 2H); 7.19 (s, 2H); 8.48 (s, 1H); 9.45 (s, 1H). 13C NMR (75 MHz, DMSO-d6) delta: 34.5; 56.0; 106.5; 121.7; 140.7; 148.0; 169.7; 170.8; 196.6. HRMS (DCI, CH4) m/z calcd for C12H13N2O4S2 [M+H]+: 313.0317, found: 313.0323.

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

Reference£º
Article; Vanucci-Bacque, Corinne; Carayon, Chantal; Bernis, Corinne; Camare, Caroline; Negre-Salvayre, Anne; Bedos-Belval, Florence; Baltas, Michel; Bioorganic and Medicinal Chemistry; vol. 22; 15; (2014); p. 4269 – 4276;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Procedure E; [00215] To a sealed tube containing CuI (8mg, 0.039mmol), K2CO3 (0.2 Ig, 1.54 mmol) and (IS, 25)-cyclohexane-l,2-diamine (9mg, 0.077 mmol) under a N2 atmosphere was added a solution of 5-bromo-2-(naphthalene-2-yl)benzo[d]oxazole (0.25g, 0.77 mmol) in anhydrous toluene (2.5 mL), followed by a solution of isothiazolide-l,2-dioxide (0.12g, 0.96 mmol) in anhydrous toluene (2.5 mL). The resulting reaction mixture was heated to HO0C for 12h, cooled to room temperature, filtered over celite and concentrated under reduced pressure. The residue was purified by column chromatography eluting with petroleum ether/EtOAc (1/0 to 0/1, v/v), followed by a crystallisation from industrial methylated spirits to give 30mg (11%) of 5-(isothiazolidin-dioxide-2-yl)-2-(naphthalene-2-yl)benzo[d]oxazole. LCMS RT = 2.24 min, M+H+ 364.8. 1H NMR (D6-DMSO): 8.84 (IH, br s), 8.26 (IH, dd, J 1.6 &; 8.6), 8.20- 8.13 (2H, m), 8.06-8.03 (IH, m), 7.85 (IH, d, J 8.8), 7.70-7.63 (3H, m), 7.38 (IH, dd, J2.3 &; 8.9), 3.84 (2H, t, J6.5), 3.55 (2H, t, J7.3), 2.45 (2H, m).

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; BioMarin IGA, Ltd.; WREN, Stephen, Paul; WYNNE, Graham, Michael; WILSON, Francis, Xavier; POIGNANT, Severine, Danielle; WO2010/112093; (2010); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a mixture of tert-butyl (6S)-3-iodo-6-methyl-6,7-dihydro-4H-pyrazolo[l,5-a]pyrazine- 5-carboxylate (intermediate 1-1, 100 mg, 0.28 mmol), 1,2-thiazolidine 1,1-dioxide (compound la, 50 mg, 0.41 mmol), trans-N,N’-dimethylcyclohexane-l,2-diamine (8 mg, 0.055 mmol) and Cul (10 mg, 0.055 mmol) in DMSO (5 mL) was added K2C03 (114 mg, 0.83 mmol). The reaction mixture was stirred at 100 C for 12 hours, and then concentrated under reduced pressure. The residue was purified by prep-HPLC to give tert-butyl (6S)-3-(l,l-dioxo-l,2-thiazolidin-2-yl)-6- methyl-6,7-dihydro-4H-pyrazolo[l,5-a]pyrazine-5-carboxylate (compound lb, 72 mg) as a yellow solid. MS obsd. (ESI+) [(M+H)+]: 357.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; HAN, Xingchun; LIN, Xianfeng; SHEN, Hong; HU, Taishan; ZHANG, Zhisen; (96 pag.)WO2018/11163; (2018); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

General procedure: 0.005 mol of appropriate rhodanine-3-alkanoicacid, 5 g molecular sieves 4 A, 25 cm3 isopropyl alcohol,0.0055 mol appropriate aldehyde and 2.53 g (0.025 mol)triethylamine were placed in a flask. The mixture washeated under a reflux condenser for 5 h in nitrogen. Afterheating, the solution was filtered hot. The permeate wascooled and 50 cm3 of 2M hydrochloric acid solution wasadded. The resulting sediment was filtered using Buechnerfunnel and crystallised from isopropyl alcohol or glacialacetic acid.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Tejchman, Waldemar; Korona-Glowniak, Izabela; Malm, Anna; Zylewski, Marek; Suder, Piotr; Medicinal Chemistry Research; vol. 26; 6; (2017); p. 1316 – 1324;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 171877-39-7

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various.

171877-39-7, (S)-4-Benzylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Thiazolidine-2-thione 2 (2.5 mmol), benzyl chloride (317 mg, 2.5 mmol), and K2CO3(691 mg, 5 mmol) were dissolved in 10 mL of acetone. The resulting solution was refluxedfor 2-4 h under TLC monitoring and then was allowed to cool to r.t. and filtered. Afterremoval of the solvent, the crude product was obtained and purified by silica-gel columnchromatography with a mixture of petroleum ether and EtOAc (10:1, v/v) as eluent.

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Chen, Ning; Du, Hongguang; Liu, Weidong; Wang, Shanshan; Li, Xinyao; Xu, Jiaxi; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 190; 1; (2015); p. 112 – 122;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com