Electric Literature of C13H15F3N2O. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: (R)-4-(tert-Butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole, is researched, Molecular C13H15F3N2O, CAS is 1428537-19-2, about Ni-Catalyzed Ligand-Controlled Regiodivergent Reductive Dicarbofunctionalization of Alkenes.
Transition-metal-catalyzed dicarbofunctionalization of alkenes involving intramol. Heck cyclization followed by intermol. cross-coupling has emerged as a powerful engine for building heterocycles with sterically congested quaternary carbon centers. However, only exo-cyclization/cross-coupling products can be obtained; endo-selective cyclization/cross-coupling has not been reported yet and still poses a formidable challenge. We herein report the first example of catalyst-controlled dicarbofunctionalization of alkenes for the regiodivergent synthesis of five- and six-membered benzo-fused lactams bearing all-carbon quaternary centers. Using a chiral Pyrox- or Phox-type bidentate ligand, 5-exo cyclization/cross-couplings proceed favorably to produce indole-2-ones in good yields with excellent regioselectivity and enantioselectivities (up to 98% ee). When C6-carboxylic acid-modified 2,2′-bipyridine was used as the ligand, 3,4-dihydroquinolin-2-ones were obtained in good yields through 6-endo-selective cyclization/cross-coupling processes. This transformation is modular and tolerant of a variety of functional groups. The ligand rather than the substrate structures precisely dictates the regioselectivity pattern. Moreover, the synthetic value of this regiodivergent protocol was demonstrated by the preparation of biol. relevant mols. and structural scaffolds.
When you point to this article, it is believed that you are also very interested in this compound(1428537-19-2)Electric Literature of C13H15F3N2O and due to space limitations, I can only present the most important information.
Reference:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com