Little discovery in the laboratory: a new route for 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

1438-16-0, Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.1438-16-0, name is 3-Aminorhodanine,below Introduce a new synthetic route.

Example 3 N-[2-[4-(2,4-Dioxothiazolidin-5-ylmethyl)phenoxyacetylamino]-5-methoxyphenyl]-N-methylcarbamic Acid t-butyl Ester (Exemplification Compound Number 9-8) To a suspension at 0 C. of N-(2-amino-5-methoxyphenyl)-N-methylcarbamic acid t-butyl ester (4.2 g) and 4-(2,4-dioxothiazolidin-5-ylmethyl)phenoxyacetic acid (5.2 g) in methylene chloride (30 ml) was added triethylamine (5.1 ml) and 50% propylphosphonic acid cyclic anhydride in ethyl acetate (12.7 g) and the mixture was stirred at the same temperature for 2 hours. At the end of this time to the reaction mixture was added 5% aqueous sodium hydrogencarbonate solution and the mixture was extracted with methylene chloride. The extract was washed with water and diluted hydrochloric acid and concentrated in vacuo. To the residue was added methanol (40 ml) and the precipitated crystals were filtered to give the title compound (7.3 g, yield 85%). IR spectrum (KBr, nu cm-1): 3323, 1751, 1697, 1534, 1510, 1232, 1153. 1H-NMR spectrum (DMSO-d6, 400 MHz, delta ppm): 1.28(9H, br.s), 3.02(3H, s), 3.07(1H, dd, J=14.0, 9.1 Hz), 3.31(1H, dd, J=14.0, 4.3 Hz), 3.74(3H, s), 4.65(2H, s), 4.87(1H, dd, J=9.1, 4.3 Hz), 6.80-6.95(2H, m), 6.92(2H, d, J=8.5 Hz), 7.19(2H, d, J=8.5 Hz), 7.69(1H, br.s), 8.95(1H, br.s), 12.00(1H, br.s)., 179087-93-5

Any one of these steps may be slow and thus may serve as the rate determining step. In general, however, in the presence of the catalyst, the overall rate of the reaction is faster than it would be if the reactants were in the gas or liquid phase.

Reference£º
Patent; SANKYO COMPANY, LIMITED; US2003/8907; (2003); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com