New learning discoveries about 171877-39-7

The synthetic route of 171877-39-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.171877-39-7,(S)-4-Benzylthiazolidine-2-thione,as a common compound, the synthetic route is as follows.

To a solution of (S)-4-benzylthiazolidine-2-thione (1 g, 4.78 mmol) in THF (dry, 50 mL) was added n-BuLi (2.87 mL, 7.17 mmol, 2.5 M) at – 78 C. The resulting mixture was stirred at that temperature for 1 .5 h, then 2-cyclohexylacetyl chloride (1 .10 ml, 7.17 mmol) was added. The temperature was maintained at – 78 C for 2.5 h. Then the reaction mixture was allowed to warm to RT and stirred for 16 h. After an aqueous work up with saturated NH4CI solution the crude product was purified by flash chromatography (cyclohexane) to afford 29 as a yellow crystalline solid (1 .48 g, 4.45 mmol, 93 %). TLC [cyclohexane/EE, 8:2]: Rf = 0.6 Mass (ESI+), calculated 333.12 [C18H23NOS2 + H]+, found = 334.04 [M+H]+

The synthetic route of 171877-39-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MAX-PLANCK-GESELLSCHAFT ZUR FOeRDERUNG DER WISSENSCHAFTEN E.V.; GAALI, Steffen; HAUSCH, Felix; KIRSCHNER, Alexander; FENG, Xiri; BRACHER, Andreas; RUEHTER, Gerd; WO2015/39758; (2015); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of tetrazoloquinoline aldehyde 1a (1 mmol) and rhodanine 2a (1 mmol), 20 mol % [HDBU][HSO4] was added, and the mixture was heated on an oil bath at 80 C for 30 min. During the reaction process, the mixture was solidified and after completion of the reaction (monitored by TLC), the reaction was cooled to room temperature, water was added and stirred for 5 min. The solid obtained was removed by filtration and recrystallized from EtOH-DMF. The filtrate was dried under reduced pressure to recover ionic liquid and reused in subsequent cycles.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Subhedar, Dnyaneshwar D.; Shaikh, Mubarak H.; Nawale, Laxman; Yeware, Amar; Sarkar, Dhiman; Khan, Firoz A. Kalam; Sangshetti, Jaiprakash N.; Shingate, Bapurao B.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 9; (2016); p. 2278 – 2283;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 171877-39-7

As the paragraph descriping shows that 171877-39-7 is playing an increasingly important role.

171877-39-7, (S)-4-Benzylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The product was synthesizedfollowing a previously reported procedure.1 To a solution of (S)-4-benzylthiazolidine-2-thione(0.15 g, 0.72 mmol) and triethylamine (0.11 mL, 0.79 mmol) in DCM (1.1 mL) at 0 C wasadded dropwise a solution of butyryl chloride (0.078 mL, 0.75 mmol) dissolved in DCM (0.3mL) over 2 min. The vial containing the butyryl chloride solution was rinsed with additionalDCM (0.3 mL) which was added to the reaction. The reaction was warmed to room temperatureand stirred for 4.5 h. The reaction was then quenched with water and the organic layer wasseparated from the aqueous phase. The aqueous phase was extracted three times with DCM.The combined organic layers was washed with brine and dried with anhydrous Na2SO4. Thesuspension was filter and volatile materials were removed using a rotary evaporator. The crudematerial was purified via silica gel flash chromatography (7% acetone in hexanes) to yield 0.169g of product as a yellow solid (84% yield). The resonances in the 1H NMR and 13C spectrum ofthe product matched previously reported chemical shifts.1

As the paragraph descriping shows that 171877-39-7 is playing an increasingly important role.

Reference£º
Article; Huang, David S.; Wong, Henry L.; Georg, Gunda I.; Bioorganic and Medicinal Chemistry Letters; vol. 28; 16; (2018); p. 2789 – 2793;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 26364-65-8

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Add 0.01 mol to a 250 mL three-necked flask5-chloromethyl-3-(2,6-difluorophenyl)-1,2,4-oxadiazole,0.01mol2-(cyanoimino)thiazolidine,80mL DMF, stirring reaction at 80 C for 4h, TLC detection reaction is completed,Add distilled water, suction filtration, and dryness.Obtained 2.57g of a white solid.The yield was 80%.

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

Reference£º
Patent; Qingdao University of Science and Technology; Xu Liangzhong; Sun Jianxin; Cui Huanqi; Wang Minghui; (8 pag.)CN109320471; (2019); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 1438-16-0

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.

General procedure: A mixture of aminorhodanine (1 mmol), isatin (1 mmol) and 5 muL of acetic acid in 2mL of distilled ethanol was placed in a cylindrical quartz reactor (Phi = 4 cm). The reactor was introducedinto a monomode microwave (Anton Paar) apparatus, for 5 min at100 C and 50 Watts. The crude reaction mixture was allowed tocool down at room temperature and ethanol (10 mL) or mixture of H2O/EtOH (10 mL) was directly added in the cylindrical quartzreactor. The resulting precipitated product was filtered off and waspurified by recrystallization from ethanol if necessary.

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Khaldoun, Khadidja; Safer, Abdelmounaim; Boukabcha, Nourdine; Dege, Necmi; Ruchaud, Sandrine; Souab, Mohamed; Bach, Stephane; Chouaih, Abdelkader; Saidi-Besbes, Salima; Journal of Molecular Structure; vol. 1192; (2019); p. 82 – 90;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 26364-65-8

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo. 3-(2-methylbenzyl)thiazolidin-2-ylidene-cyanamide (1)white solid, yield: 0.494 g (85.4%), m.p.: 115-16 C. 1HNMR (400 MHz, CDCl3):delta (ppm) 2.34 (s, 3H, CH3),3.32 (t,J = 7.6 Hz, 2H, NCH2),3.74 (t, 2H, J = 7.6 Hz, SCH2),4.57(s, 2H, CH2),7.14-7.19 (m, 2H, Ph). IR (KBr disc, cm-1):2918, w, nu(CH); 2182, s, 2160 sh, v(C?N); 1573, s, v(C=N).

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 2-((S)-3-((S)-1-(4-bromophenyl)ethyl)-2-oxo-6-phenyl-1,3-oxazinan-6-yl)ethyl-methanesulfonate (360 mg, 0.75 mmol) and K2CO3 (207 mg, 1.5 mmol) in acetonitrile (10 mL) was added isothiazolidine 1,1-dioxide (121 mg, 4.6 mmol), and the mixture was refluxed overnight. The mixture was filtered and the filtrate was concentrated to give the crude product, which was purified by preparative HPLC to afford compound (S)-3-((S)-1-(4-bromophenyl)ethyl)-6-(2-(1,1-dioxo-isothiazolidin-2-yl)ethyl)-6-phenyl-1,3-oxazinan-2-one (2.43 mg, 1%). LC-MS Method 2 tR=1.37 min, m/z=509, 507. 1H NMR (CDCl3): 1.48 (t, 3H), 2.05-2.41 (m, 7H), 2.71-2.92 (m, 2H), 3.11 (m, 3H), 3.21 (m, 2H), 5.58 (m, 1H), 6.73 (d, 2H), 7.18 (m, 1H), 7.23 (m, 3H); 7.35 (m, 3H).

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Vitae Pharmaceuticals, Inc.; Boehringer Ingelheim International GmbH; US2010/331320; (2010); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

1,2-thiazolidine 1,1-dioxide (0.031 g, 0.259 mmol) in dimethylformamide (1 mL) was treated with 60% sodium hydride (0.012g, 0.518 mmol, 0.021 g of a 60%> in oil dispersion). The reaction mixture was stirred for 5 min. To this solution was added Example 41b (0.05 g, 0.086 mmol). The reaction mixture was stirred at room temperature for 2 hours. 2 N NaOH (1 mL) was added and the reaction mixture was heated at 65 C for 2 hours. After cooling to room temperature, the reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted with additional ethyl acetate twice. The combined organic layers were washed with brine, dried over MgSC^, filtered, and concentrated. The residue was purified by preparative HPLC (CI 8, 10-80% acetonitrile in 0.1% TFA water) to afford 0.025 g (64%) of the title compound. 1H NMR (500 MHz, DMSO-d6) delta 2.21-2.25 (m, 2H), 3.15 (t, J=6.97 Hz, 2H), 3.23-3.27 (m, 2H), 3.50 (s, 3H), 4.13 (s, 2H), 6.25-6.26 (m, 1H), 6.88 (d, J=7.63 Hz, 2H), 7.00 (d, J=8.54 Hz, 1H), 7.03-7.05 (m, 1H), 7.25-7.30 (m, 4H), 7.34 (dd, J=8.39, 2.29, 1H), 7.48 (d, J=2.44 Hz, 1H), 12.00 (s, 1 H). MS (ESI+) m/z 450.2 (M+H)+.

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; ABBVIE INC.; ABBOTT LABORATORIES TRADING (SHANGHAI) COMPANY, LTD.; WANG, Le; PRATT, John K.; MCDANIEL, Keith F.; DAI, Yujia; FIDANZE, Steven D.; HASVOLD, Lisa; HOLMS, James H.; KATI, Warren M.; LIU, Dachun; MANTEI, Robert A.; MCCLELLAN, William J; SHEPPARD, George S.; WADA, Carol K.; WO2013/97601; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 24; 3,3-Difluoro-cyclobutanecarboxylic Acid ((S)-3-{5-[2-(1,1-dioxo-1lambda6-isothiazolidin-2-yl)-4,6-dimethyl-pyrimidine-5-carbonyl]-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl}-1-phenyl-propyl)-amide (I-49); step 1-; A solution of isothiazolidine 1,1-dioxide (114, 40 mg, 0.33 mmol; CAS Reg No. 5908-62-3) in THF (0.4 mL) and DMF (0.4 mL) was treated with NaH (14 mg, 60% dispersion in mineral oil) and heated to 80 C. for 5 min before a solution of 84 (116 mg, 0.27 mmol) in DMF (1.6 mL) was added. The reaction mixture was stirred at 80 C. for 5 min, allowed to cool to RT, quenched by the addition of water, extracted with EtOAc, dried (Na2SO4) and concentrated in vacuo. The residue was purified by SiO2 column chromatography eluting with DCM:MeOH:NH4OH (60/10/1) to afford 115 mg (90%) of 115a.

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; Lemoine, Remy; Melville, Chris Richard; Rotstein, David Mark; Wanner, Jutta; US2007/191335; (2007); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com