New learning discoveries about 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

To a stirred solution of 5-{9-fluoro-6-methanesulfonyl-5-[(S)-oxan-4- y l(pheny l)methy 1] -5H-py rido [3,2-b] indol-3 -y 1 } – 1 ,4-dimethy 1- 1H- 1 ,2,3-triazole (25.0 mg 0.0500 mmol) and isothiazolidine-l,l-dione (5.7 mg, 0.0500 mmol) in DMF (0.25 mL) was added t-BuOK (21.0 mg, 0.190 mmol). This mixture was heated at 65 C for 1.5 h and cooled to room temperature. The mixture was then diluted with MeOH and purified via preparative LC/MS with the following conditions: Column: Waters XBridge Phenyl, 19 x 200 mm, 5-mutaueta particles; Mobile Phase A: 5:95 ACN: water with 10 mM NH4OAC; Mobile Phase B: 95:5 ACN: water with 10 mM NH4OAc; Gradient: 15-70% B over 20 min, then a 5-min hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation to give 2-[3-(dimethyl-lH- l,2,3-triazol-5-yl)-6-methanesulfonyl-5-[(S)-oxan-4-yl(phenyl)methyl]-5H-pyrido[3,2- b]indol-9-yl]- 6,2-thiazolidine-l,l-dione (12.3 mg, 41%). NMR (500MHz, DMSO- de) delta 8.72 (s, IH), 8.38 (d, J=8.4 Hz, IH), 7.88 (s, IH), 7.62 (br d, J=8.4 Hz, 3H), 7.36- 7.30 (m, 2H), 7.27 (br d, J=7.1 Hz, IH), 6.81 (br d, J=10.1 Hz, IH), 4.11 (br d, J=2.0 Hz, 2H), 3.86 (br d, J=9.8 Hz, IH), 3.76 (s, 3H), 3.74 (s, 2H), 3.64 (br d, J=8.8 Hz, IH), 3.57 (br t, J=7.4 Hz, IH), 3.19 (br t, J=12.1 Hz, IH), 2.65-2.57 (m, 2H), 2.54 (s, 3H), 2.07 (s, 3H), 1.95 (br d, J=12.5 Hz, IH), 1.75-1.56 (m, 2H), 0.42 (br d, J=12.1 Hz, IH). LCMS: RT = 1.414 min; (ES): m/z (M+H)+ = 634.95; LCMS: Column: Waters Acquity UPLC BEH C18, 2.1 x 50 mm, 1.7-muiotaeta particles; Mobile Phase A: 5:95 ACN:water with 10 mM NH4OAc; Mobile Phase B: 95:5 ACN:water with 10 mM NH4OAC; Temperature: 50 C; Gradient: 0-100% B over 3 min, then a 0.75-min hold at 100% B; Flow: 1.11 mL/min. HPLC Purity at 220 nm: 100 %

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; HAN, Wen-Ching; DEGNAN, Andrew P.; DESKUS, Jeffrey A.; GAVAI, Ashvinikumar V.; GILL, Patrice; SCHMITZ, William D.; STARRETT, John E., Jr.; (193 pag.)WO2016/183115; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Downstream synthetic route of 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 5-tert-butyl-7-chloro-3-(2-chlorobenzyl)-3H-[l,2,3]triazolo[4,5-d] pyrimidine (15.9 mg, 47.2 muiotaetaomicron?), 1,1-dioxo-isothiazolidine (11.4 mg, 94.4 muiotaetaomicron?) and DBU (14.2 mu?^, 94.4 mumol) in DMF (250 mu?) was stirred at the room temperature overnight. The reaction mixture was directly purified by preparative HPLC (column: Gemini 5um C18 110A 75 x 30mm. mobile phase: water (0.05% Et3N): acetonitrile 75:25% to 5:95%. WL: 230 nm Flow: 30 mL/min.) to afford the title compound as white solid (3.10 mg, 16%). MS(m/e): 387.3 (MH+).

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; ADAM, Jean-Michel; BISSANTZ, Caterina; GRETHER, Uwe; KIMBARA, Atsushi; NETTEKOVEN, Matthias; ROEVER, Stephan; ROGERS-EVANS, Mark; WO2013/68306; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 1438-16-0

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.

53 Sodium borohydride (19.1 g) was added to 48 THF (750 mL), and slurry of 54 N-aminorhodanine (250 g) in THF (500 mL) was added portionwise at below 5 C. After stirring for 30 minutes at below 5 C., 55 methanol (111 mL) was added dropwise, and the mixture was stirred for 2 hours. 56 Conc. hydrochloric acid (44 mL) was diluted with water (500 mL) and added dropwise to the mixture, and then 49 water (1000 mL) was added dropwise, and the mixture was stirred for 1 hour at below 10 C. The precipitated crystals were filtered, washed with water (600 mL) and dried at 40 C. under reduced pressure to yield the 57 title compound (209.1 g). (0189) MS (m/z): 151 [M+H]+

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

Reference£º
Patent; NIPPON SHINYAKU CO., LTD.; HIGUCHI, Fumi; (17 pag.)US2019/48023; (2019); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 171877-39-7

As the paragraph descriping shows that 171877-39-7 is playing an increasingly important role.

171877-39-7, (S)-4-Benzylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution (45r)-4-benzyl-l,3-thiazolidine-2-thione (38 g) in dichloromethane (350 mL), cooled to O0C was added propylene oxide (12.7 mL) and trifluoroacetic acid (14 mL). After stirring the reaction mixture for 2 hours, the solvents were evaporated under reduced pressure to obtain a residue which was purified by column chromatography over silica gel using 20% ethylacetate in hexane as eluant to afford the title compound (0.9 g). Mass (m/z): 194.18

As the paragraph descriping shows that 171877-39-7 is playing an increasingly important role.

Reference£º
Patent; RANBAXY LABORATORIES LIMITED; WO2008/23336; (2008); A2;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 1438-16-0

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

1438-16-0, 3-Aminorhodanine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A mixture of aminorhodanine (1 mmol), isatin (1 mmol) and 5 muL of acetic acid in 2mL of distilled ethanol was placed in a cylindrical quartz reactor (Phi = 4 cm). The reactor was introducedinto a monomode microwave (Anton Paar) apparatus, for 5 min at100 C and 50 Watts. The crude reaction mixture was allowed tocool down at room temperature and ethanol (10 mL) or mixture of H2O/EtOH (10 mL) was directly added in the cylindrical quartzreactor. The resulting precipitated product was filtered off and waspurified by recrystallization from ethanol if necessary.

1438-16-0 3-Aminorhodanine 74033, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Khaldoun, Khadidja; Safer, Abdelmounaim; Boukabcha, Nourdine; Dege, Necmi; Ruchaud, Sandrine; Souab, Mohamed; Bach, Stephane; Chouaih, Abdelkader; Saidi-Besbes, Salima; Journal of Molecular Structure; vol. 1192; (2019); p. 82 – 90;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 171877-39-7

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.171877-39-7,(S)-4-Benzylthiazolidine-2-thione,as a common compound, the synthetic route is as follows.

General procedure: Under N2 atmosphere, NaH (120 mg, 60% dispersion in mineral oil, 3 mmol)was added to a solution of thiazolidine-2-thione 2 (2.5 mmol) in 5 mL of THF and the resulting solution was cooled to 78C by a dry-ice-acetone bath. Propionyl chloride(255 mg, 2.5 mmol, 480 muL) was then dropped in. After removal of the solvent in vacuo,the residue was purified by column chromatography with a mixture of petroleum ether(60-90C)/EtOAc (5:1, v/v) as eluent.

171877-39-7 (S)-4-Benzylthiazolidine-2-thione 11458470, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Chen, Ning; Du, Hongguang; Liu, Weidong; Wang, Shanshan; Li, Xinyao; Xu, Jiaxi; Phosphorus, Sulfur and Silicon and the Related Elements; vol. 190; 1; (2015); p. 112 – 122;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 26364-65-8

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a 100 ml three-necked flask equipped with a thermometer and an electromagnetic stir bar were added 0.01 mol of anhydrous K2CO3 powder, 0.01 mol of 2-nitroaniline,30 ml of acetone,A solution prepared by dissolving 0.01 mol of 1,3-dimethyl-4-pyrazolecarboxylic acid chloride in 20 ml of acetone was gradually added dropwise at low temperature (0 to 5 C), and the reaction was continued at room temperature for 10 hours. The reaction mixture was filtered under reduced pressure, and the resulting filtrate was decompressed to yield a crude product of compound Q110907. The crude product of compound Q110907 was recrystallized from acetonitrile to give the compound (Q110907) in a yield of 42.9%. Using Thiazoline-2-imino-cyanamide instead of 2-nitroaniline; Acetonitrile was used as the reaction solvent; reaction temperature was 45 ¡À 5 C; reaction time was 8 hours; toluene recrystallization

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

Reference£º
Patent; Qingdao Agricultural University; sun, Jia Long; (11 pag.)CN103524417; (2016); B;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 26364-65-8

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.26364-65-8,2-Cyanoimino-1,3-thiazolidine,as a common compound, the synthetic route is as follows.

3.42g (0.01mol) of intermediate IIc was addedIn a 250 mL reaction flask,Then add 30g acetonitrile,Add 1.2g of triethylamine,10 g of acetonitrile and 1.27 g (0.01 mol) were added dropwise with stirring.a mixture of 2-cyanoimido-1,3-thiazolidine,After the completion of the dropwise addition, the reaction was heated to reflux for 2 h.TLC tracking intermediate IIc reaction is complete,After adding 150 g of water and stirring, a solid precipitated.Filtered, dried, A pale yellow solid was obtained in 4.14 g, yield 96%.

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Qingdao University of Science and Technology; Wang Minghui; Xu Liangzhong; Peng Zhuang; Cui Huanqi; Sun Jianxin; (7 pag.)CN109336882; (2019); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.

To an oven dried 50 mE round-bottom flask, methyl2-bromo-5-methylbeioate (352 mg, 1.54 mmol), sultam(236 mg, 1.95 mmol), cesium carbonate (732 mg, 2.25mmol), palladium acetate (40.4 mg, 0.18 mmol), and Xanphos (136 mg, 0.23 5 mmol) were added and flask was placedunder argon. Reagents were suspended in 8 mE of anhydrousdioxane and mixture was heated at 100 C. overnight. Aftercooling to room temperature, reaction mixture was filtered,was1ng with ethyl acetate. Combined filtrate was concen446.04trated under reduced pressure and resulting film was purifiedby silica gel column chromatography (25-100% EthylAcetate in Hexanes) to yield intermediate 11.?H-NMR (DMSO, 400 MHz): oe 7.75 (d, 1H), 7.44 (m, 1H),7.35 (m, 1H), 3.89 (s, 3H), 3.81 (t, 2H), 3.28 (t, 2H), 2.55 (m,2H), 2.39 (s, 3H).ECMS m/z [M+H] C12H15N04S requires: 270.07. Found270.12.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; Gilead Sciences, Inc.; Sangi, Michael; (125 pag.)US9278975; (2016); B2;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 185137-29-5

As the paragraph descriping shows that 185137-29-5 is playing an increasingly important role.

185137-29-5, (S)-4-Phenylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

b. 4-(S)-Phenyl-2-thione-thiazolidine-3-carboxylic acid-4-nitro-phenyl ester To a suspension of NaH (26 mg, 1.04 mmol) in 10 mL of anhydrous THF under argon, a solution of 4(S)-Phenyl-thiazolidine-2-thione (170 mg, 0.87 mmol) in THF was added dropwise via an dropping funnel. The resulting suspension was stirred at room temperature for 30 min. This suspension was then added dropwise via cannula into another round bottom flask containing a solution of 4-nitrophenylchloroformate (217 mg, 1.04 mmol) in 20 mL of THF and cooled at -78 C. over a period of 15 min. The stirring was continued for 2 h after which the solvent was removed and the residue was purified by column chromatography on silica gel with 1:1 hexane/CH2 Cl2 then 3:7 hexane/CH2 Cl2 followed by CH2 Cl2 (Rf =0.50) to obtain (+)-4(S)-phenyl-2-thione-thiazolidine-3-carboxylic acid-4-nitro-phenyl ester as a pale yellow solid (200 mg, 64%).

As the paragraph descriping shows that 185137-29-5 is playing an increasingly important role.

Reference£º
Patent; Synaptic Pharmaceutical Corporation; US6159990; (2000); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com