Introduction of a new synthetic route about 1,1-Dioxo-isothiazolidine

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

5908-62-3, PREPARATION 19 STR75 (This is an alternative to the method of Preparation 2). A mixture of 4-vinylpyridine (324 g), isothiazolidine-1,1-dioxide (373 g), and “Triton B” solution (129 ml, 40% w/v in methanol) was heated in D.M.F. at 50-55 for 7 hours. The reaction mixture was then concentrated under vacuum, water (2.52 liters) was added, and the product was extracted into CH2 Cl2 (3*1.87 liters). The combined methylene chloride extracts were washed with water and then evaporated to dryness. The residue was dissolved in ethyl acetate (1.3 liters) at 35 and hexane (0.87 liters) was added over 10 minutes. The resulting crystalline product was granulated at -5 to 0 for 4 hours, filtered, washed with hexane (0.37 liters) and dried in vacuum at 25, to give 2-[2-(4-pyridyl)ethyl]isothiazolidine-1,1-dioxide (518 g). The material was confirmed by n.m.r., i.r. and m.p. to be identical in all respects to the product of Preparation 2.

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; Pfizer Inc.; US4489075; (1984); A;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 1,1-Dioxo-isothiazolidine

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

5908-62-3, [0831] Preparation Example 231: Preparation of methyl 2-(1,1-dioxo-1lambda6-isothiazolidin-2-yl)pyrimidine-5-carboxylate[0832][0833] Methyl 2-chloropyrimidine-5-carboxylate (173 mg) and isothiazolidine 1,1-dioxide (145 mg) were dissolved inN,N-dimethylformamide (1 mL), and sodium hydride (48mg, 60% in oil) was added under ice-cooling. After stirring atroom temperature for 6 hr, water was added, and the mixture was extracted with ethyl acetate. The solvent was evaporated,diisopropyl ether and ethyl acetate were added, and the precipitated solid was collected by filtration to give thetitle compound (185 mg).MS(ESI)m/z:258(M+H)+.

With the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; Mitsubishi Tanabe Pharma Corporation; MAEDA, Kazuhiro; ENDOH, Jun-ichi; TARAO, Akiko; TASHIRO, Kaoru; ISHIBUCHI, Seigo; HIKAWA, Hidemasa; EP2565182; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 7025-19-6

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

7025-19-6, General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 7025-19-6

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

7025-19-6, General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Introduction of a new synthetic route about 179087-93-5

179087-93-5, With the rapid development of chemical substances, we look forward to future research findings about 179087-93-5

2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid, cas is 179087-93-5, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

Acetonitrile (140.9 kg) was added to 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (18.0 kg, 64.0 mol) produced according to the process described in Japanese Patent Application (Kokai) No. 2001-72671, and after cooling to an internal temperature of 8C, thionyl chloride (8.3 kg, 69.8 mol) was added. Dimethylformamide (14.4 L) was further added followed by stirring for 3.5 hours at a temperature of 8 to 15C. An acetonitrile (84.6 kg) solution of tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate (15.7 kg, 62.2 mol) and triethylamine (8.4 kg, 83.0 mol) held at a temperature of 0 to 10C was added dropwise thereto over 1 hour while cooling so as to maintain at a temperature of 0 to 5C followed by further stirring for 2 hours at the same temperature. Next, water (144 L) was added over 22 minutes followed by stirring for 30 minutes while holding at an internal temperature of 0 to 6C and allowing to stand undisturbed for 12 hours. After filtering out the resulting crystals, the crystals were washed with a 2:1 aqueous solution (54 L) to obtain wet crystals of tert-butyl N- {2-{4-(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate.

179087-93-5, With the rapid development of chemical substances, we look forward to future research findings about 179087-93-5

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP1902713; (2008); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 1438-16-0

The synthetic route of 1438-16-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.

General procedure: A mixture of aminorhodanine (1 mmol), isatin (1 mmol) and 5 muL of acetic acid in 2mL of distilled ethanol was placed in a cylindrical quartz reactor (Phi = 4 cm). The reactor was introducedinto a monomode microwave (Anton Paar) apparatus, for 5 min at100 C and 50 Watts. The crude reaction mixture was allowed tocool down at room temperature and ethanol (10 mL) or mixture of H2O/EtOH (10 mL) was directly added in the cylindrical quartzreactor. The resulting precipitated product was filtered off and waspurified by recrystallization from ethanol if necessary., 1438-16-0

The synthetic route of 1438-16-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Khaldoun, Khadidja; Safer, Abdelmounaim; Boukabcha, Nourdine; Dege, Necmi; Ruchaud, Sandrine; Souab, Mohamed; Bach, Stephane; Chouaih, Abdelkader; Saidi-Besbes, Salima; Journal of Molecular Structure; vol. 1192; (2019); p. 82 – 90;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: The suspension of 2-thioxo-1,3-thiazolidin-4-one (0.01 mol) 1a-40a in ethanol (50 mL) was mixed under stirring with a solution of aldehyde (0.011 mol) 1b-40b followed by the addition 3 drops of piperidine under the reflux conditions. The resulting mixture was heated under reflux until complete disappearance of 2-thioxo-1,3-thiazolidin-4-one, TLC control CH3OH – EtOAc 1:9. The reaction mixture was diluted with water (75 mL) and filtrated. The solid residue was recrystallized from a mixture of IPA/DMF.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various.

Reference£º
Article; Volynets, Galyna P.; Bdzhola, Volodymyr G.; Golub, Andriy G.; Synyugin, Anatoliy R.; Chekanov, Maksym A.; Kukharenko, Oleksandr P.; Yarmoluk, Sergiy M.; European Journal of Medicinal Chemistry; vol. 61; (2013); p. 104 – 115;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 19771-63-2

As the paragraph descriping shows that 19771-63-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.19771-63-2,(R)-2-Oxothiazolidine-4-carboxylic acid,as a common compound, the synthetic route is as follows.,19771-63-2

Preparation of N-{[(R)-(2-oxo-thiazolidine-4-yl)carbonyl]}-L-leucine (Compound 2f). To a solution of (R)-(-)-2-oxo-thiazolidine-4-carboxylic acid (1.49 g, 10.2 mmols), L-Leucine methylester hydrochloride (1.85 g, 10.2 mmols) and N-methylmorpholinee (1.12 ml, 10.2 mmols) in anhydrous THF (15 ml), cooled at 0 C., was added, under stirring, a solution of DCDI (2.10 g, 10.2 mmols) and HBT (13 mg, 1 mmols) in anhydrous THF (8 ml). After standing one night at room temperature, the N,N’-dicyclohexylures and the hydrochloride of N-methylmorpholines were separated by filtration and the filtered substance was concentrated at reduced pressure. The product was purified by dilution of the raw reside with CHCl3 (50 ml) and extraction with saturated NaHCO3 solution (20 ml*2) and saturated NaCl solution (30 ml). Drying of the organic phase reunited on Na2SO4 and the removal of the solvent at reduced pressure provided the N-{[(R)-(2-Oxo-thiazolidine-4-yl)carbonyl]}-L-leucine methylester which was crystallized with EtOAc: 1.94 g (69%); m.p. 125-6 C.; [a]D22=-79 (1, methanol); IR (CHCl3): 3412, 2956, 1734, 1678, 1515, 1434, 1338, 1158 cm-1; 1H-NMR (CHCl3): d 0.90 and 0.95 [two s, 6, CH2CH(CH3)2], 1.42-74 [m, 3, CH2CH(CH3)2], 3.37-3.85 [m, 2, CH2S and 3.63 (s, 3, OCH3)], 4.18-4.69 (two m, 2, aCH and ring CH), 7.16 (d, 1, NH, J=8 Hz). Calculated for C11H17N2O4S: C, 48.34; H, 6.27; N, 10.25. Found C, 48.29; H, 6.80; N, 10.22%.

As the paragraph descriping shows that 19771-63-2 is playing an increasingly important role.

Reference£º
Patent; Polifarma S.p.A.; Consiglio Nazionale Delle Ricerche; US6339160; (2002); B1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 19771-63-2

19771-63-2 (R)-2-Oxothiazolidine-4-carboxylic acid 72390, athiazolidine compound, is more and more widely used in various.

19771-63-2, (R)-2-Oxothiazolidine-4-carboxylic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,19771-63-2

To a solution of 3-[3-[[4-[(3-aminopropyl) amino] -5-bromo-2- pyrimidinyl] amino] PHENYL-2, 4-IMIDAZOLIDINEDIONE hydrogen chloride salt (6.9 g, 13.9 mmol), (-)-2-OXO-4-THIAZOLIDINECARBOXYLIC acid (2.5 g, 17 mmol, 1.2 equiv. ) and N,N-diisopropylethylamine (10 mL, 57.4 MMOL, 4.1 equiv. ) in DIMETHYLFORMAMIDE (150 mL) was added 0-(7-AZABENZOTRIAZOL-1-YL)-N, N, N’, N’ tetramethyluronium HEXAFLUOROPHOSPHATE (6.5 g, 17.1 MMOL, 1.2 equiv. ) at 0 C. The resulting solution was warmed to room temperature and stirred overnight. The reaction mixture was concentrated under reduced pressure to remove dimethylformamide. The crude residue was triturated in water to give a suspension. The suspension was filtered and the filter cake was washed with water and air-dried (ca. 8 g). The solid was purified by HPLC chromatography using acetonitrile/water to afford the title compounds, (4R)-N-[3-[[5-bromo-2-[[3- (2, 5-dioxo-1-imidazolidinyl) phenyl] amino]-4-pyrimidinyl] amino] PROPYL]-2-OXO-4- thiazolidinecarboxamide (2.8 G) and (4R)-N-[3-[[5-bromo-2-[[3-[2,5-dioxo-3-[[(4R)- 2-oxo-4-thiazolidinyl] carbonyl]-1-imidazolidinyl] phenyl] amino]-4- pyrimidinyl] amino] propyl]-2-oxo-4-thiazolidinecarboxamide (72 mg). N-[3-[[5-bromo-2-[[3-(2,5-dioxo-1-imidazolidinyl)phenyl]amino]-4- pyrimidinyl] amino] propyl]-2-oxo-4-thiazolidinecarboxamide :’H NMR (400 MHz, DMSO-d6) : 5/POM = 1.71 (m, 2H), 3.14 (m, 2H), 3.36 (m, 1H), 3.42 (m, 2H), 3.64 (t, 1H), 4.04 (s, 2H), 4.23 (m, 1H), 6.99 (d, 1H), 7.01 (t, 1H), 7.59 (d, 1H), 7.72 (s, 1 H), 7.81 (br s, 1 H), 8.16 (m, 2H), 8.29 (s, 1H), 8.34 (s, 1H), 9.99 (br s, 1 H). (4R)-N-[3-[[5-bromo-2-[[3-[2,5-dioxo-3-[[(4R)-2-oxo-4-thiazolidinyl]carbonyl]- 1-imidazolidinyl] phenyl] amino]-4-pyrimidinyl] amino] propyl]-2-oxo-4- thiazolidinecarboxamide :’H NMR (400 MHz, DMSO-d6) : 6/POM = 1.64 (m, 2H), 3.12 (m, 2H), 3,38 (m, 4H), 3.79 (m, 2H), 4.02 (s, 2H), 5.04 (d, 2H), 5.12 (d, 2H), 6.94 (d, 1 H), 7.34 (t, 1H), 7.56 (d, 1H), 7.69 (s, 1H), 8.08 (s, 1H), 8.18 (s, 1 H), 8.26 (s, 1 H), 8.37 (s, 1 H), 9.79 (br s, 1 H).

19771-63-2 (R)-2-Oxothiazolidine-4-carboxylic acid 72390, athiazolidine compound, is more and more widely used in various.

Reference£º
Patent; SCHERING AKTIENGESELLSCHAFT; WO2004/48343; (2004); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com