Brief introduction of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,5908-62-3

A Schlenk tube was charged with 5-[5-({3-[(1 R,5S/1 S,5R)-1-(4-bromophenyl)-3- azabicyclo[3.1.0]hex-3-yl]propyl}thio)-4-methyl-4H-1 ,2,4-triazol-3-yl]-2-methylquinoline (cf. Example 2; 0.15 g), isothiazolidine 1 ,1 -dioxide (46 mg), tris(dibenzylideneacetone)- dipalladium(O) (6 mg), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (10 mg), cesium carbonate (130 mg) and 1 ,4-dioxane (2 mL). The Schlenk tube was sealed with a teflon screwcap and the reaction mixture was stirred at 100 0C for 12 h. The reaction mixture was allowed to cool to room temperature, diluted with dichloromethane (10 mL), filtered EPO and concentrated in vacuo. The crude product was purified by flash chromatography (dichloromethane to 10% MeOH in dichloromethane) to give 50 mg of the free base of the title compound. To a solution of this material in dichloromethane (0.3 mL) was added HCI (0.087 mL, 1 M in Et2O), the solvent evaporated in vacuo and the material thus obtained triturated with Et2O to give 52 mg of the title compound as a white solid.NMR (1H, DMSO): delta 10.57 (bs,1 H), 8.27 (bd, 1 H), 8.19 (d, 1 H), 7.94 (t, 1 H), 7.82 (d, 1 H), 7.55 (d, 1 H)1 7.32 (d, 2H), 7.18 (d, 2H), 4.03 (dd, 1H), 3.72 (m, 3H), 3.60/3.20 (bm, 8H), 3.45 (s, 3H), 2.75 (s, 3H), 2.41 (m, 2H), 2.25 (m, 2H), 2.14 (m, 1 H), 1.66/1.10 (t/m, 2H). MS (ml z) 575 [MH]+.

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2007/22980; (2007); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

The important role of 1,1-Dioxo-isothiazolidine

5908-62-3 is used more and more widely, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

As a common heterocyclic compound, it belongs to thiazolidine compound, name is 1,1-Dioxo-isothiazolidine, and cas is 5908-62-3, its synthesis route is as follows.,5908-62-3

To a stirred solution of 5-{9-fluoro-6-methanesulfonyl-5-[(S)-oxan-4- yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-3-yl}-4-(2H3)methyl-l-methyl-lH-l,2,3- triazole (40.0 mg, 0.075 mmol) and isothiazolidine 1,1-dioxide (36.1 mg, 0.298 mmol) in NMP (0.40 mL) was added t-BuOK (29.2 mg, 0.261 mmol). This mixture was heated at 65 C for 2 h and cooled to room temperature. The mixture was purified via preparative LC/MS with the following conditions: Column: Waters XBridge Phenyl, 19 x 200 mm, 5- muiotaeta particles; Mobile Phase A: 5:95 ACN: water with 10 mM NH4OAC; Mobile Phase B: 95:5 ACN: water with 10 mM NH4OAC; Gradient: 15-70% B over 20 min, then a 5-min hold at 100% B; Flow: 20 mL/min. Fractions containing the desired product were combined and dried via centrifugal evaporation to give 9.6 mg. (20%). NMR (500MHz, DMSO-de) delta 8.72 (s, IH), 8.38 (d, J=8.4 Hz, IH), 7.89 (s, IH), 7.62 (br d, J=8.1 Hz, 3H), 7.37 – 7.30 (m, 2H), 7.26 (s, IH), 6.82 (br d, J=10.4 Hz, IH), 4.11 (br s, 2H), 3.86 (br d, J=8.4 Hz, IH), 3.77 (s, 3H), 3.75 (s, 3H), 3.65 (br d, J=8.8 Hz, IH), 3.57 (br t, J=7.4 Hz, IH), 3.53 – 3.45 (m, IH), 3.40 (br d, J=12.1 Hz, IH), 3.19 (br t, J=11.6 Hz, IH), 2.62 (quin, J=7.1 Hz, 2H), 2.52 – 2.52 (m, IH), 1.95 (br d, J=12.5 Hz, IH), 1.77 – 1.58 (m, 2H), 0.43 (br d, J=12.5 Hz, IH); LCMS: RT = 1.573 min; (ES): m/z (M+H)+ = 638.05; LCMS: Column: Waters Acquity UPLC BEH CI 8, 2.1 x 50 mm, 1.7-muiotaeta particles; Mobile Phase A: 5:95 ACN:water with 10 mM LtOAc; Mobile Phase B: 95:5 ACN:water with 10 mM NH40Ac;Temperature: 50 C; Gradient: 0-100% B over 3 min, then a 0.75 min hold at 100% B; Flow: 1.11 mL/min. HPLC Purity 220nm: 99 %.

5908-62-3 is used more and more widely, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; HAN, Wen-Ching; DEGNAN, Andrew P.; DESKUS, Jeffrey A.; GAVAI, Ashvinikumar V.; GILL, Patrice; SCHMITZ, William D.; STARRETT, John E., Jr.; (193 pag.)WO2016/183115; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 1438-16-0

With the rapid development of chemical substances, we look forward to future research findings about 3-Aminorhodanine

3-Aminorhodanine, cas is 1438-16-0, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

General procedure: Compound 2 (100 mg, 0.5 mmol) and 2,4-thiazolidinedione or 2-thione-4-thiazolidinone derivatives (0.5 mmol) were dissolved in ethanol (5 mL). Piperidine (100 muL) was added as a catalyst and the reaction mixture was stirred at room temperature for 5 h. Then, the reaction mixture was poured into iced water to yield a precipitate. The product was filtered, washed with distilled water and recrystallized from the indicated solvents to yield compounds 3a-f., 1438-16-0

With the rapid development of chemical substances, we look forward to future research findings about 3-Aminorhodanine

Reference£º
Article; Anh, Hoang Le Tuan; Cuc, Nguyen Thi; Tai, Bui Huu; Yen, Pham Hai; Nhiem, Nguyen Xuan; Thao, Do Thi; Nam, Nguyen Hoai; Van Minh, Chau; Van Kiem, Phan; Kim, Young Ho; Molecules; vol. 20; 1; (2015); p. 1151 – 1160;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 26364-65-8

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,26364-65-8

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo.

As the paragraph descriping shows that 26364-65-8 is playing an increasingly important role.

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

The important role of 1,1-Dioxo-isothiazolidine

5908-62-3 is used more and more widely, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

As a common heterocyclic compound, it belongs to thiazolidine compound, name is 1,1-Dioxo-isothiazolidine, and cas is 5908-62-3, its synthesis route is as follows.,5908-62-3

Example 15 6-[(1,1-Dioxido-1,2-thiazolidin-2-yl)methyl]-1-(2-methoxyethyl)-5-methyl-3-(2-phenylethyl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione To a solution of 49 mul (0.668 mmol) of propane sultam in 1.5 ml of DMF were added 27 mg (0.668 mmol) of sodium hydride (60% suspension in mineral oil) and then the mixture was stirred at RT for 25 min (“Solution 1”). To a solution of 50 mg (0.134 mmol) of the compound from Ex. 138A in 1.3 ml of dichloromethane in another reaction vessel were added, at 0 C., 47 mul (0.267 mmol) of N,N-diisopropylethylamine and 10 mul (0.140 mmol) of thionyl chloride. After 20 min, one third of Solution 1 was added at 0 C. The reaction mixture was stirred at 0 C., with addition of a further third of Solution 1 after 20 min and after 40 min of reaction time. After the last addition, the cooling bath was removed and the reaction mixture was stirred at RT for about 18 h. All the volatile constituents were then removed on a rotary evaporator. The remaining residue was separated into its components by means of preparative HPLC (Method 8). After concentration of the product fractions and drying under high vacuum, 41 mg (64% of theory) of the title compound were obtained. 1H-NMR (400 MHz, CDCl3, delta/ppm): 7.41-7.16 (m, 5H, partially obscured by the CHCl3 signal), 4.30 (s, 2H), 4.25-4.17 (m, 2H), 4.11 (t, 2H), 3.70 (t, 2H), 3.35 (s, 3H), 3.26-3.15 (m, 4H), 2.99-2.88 (m, 2H), 2.50 (s, 3H), 2.44-2.28 (m, 2H). LC/MS (Method 1, ESIpos): Rt=1.03 min, m/z=478 [M+H]+.

5908-62-3 is used more and more widely, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; HAeRTER, Michael; KOSEMUND, Dirk; DELBECK, Martina; KALTHOF, Bernd; WASNAIRE, Pierre; SUessMEIER, Frank; LUSTIG, Klemens; (369 pag.)US2018/65981; (2018); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 185137-29-5

185137-29-5 (S)-4-Phenylthiazolidine-2-thione 11333042, athiazolidine compound, is more and more widely used in various fields.

185137-29-5, (S)-4-Phenylthiazolidine-2-thione is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,185137-29-5

General procedure: To a mixture of N-crotonyl oxazolidinone 7 (100 mg, 0.43 mmol) and 4-phenyl-2-oxazolidine-2-thione 4 (77.1 mg, 0.43 mmol) in dichloromethane (5.0 mL) was added triethylamine (131.2 mg, 1.29 mmol) at room temperature. The resulting mixture was stirred and heated to reflux overnight. After cooling to room temperature, water (10 mL) was added and the reaction mixture was extracted with CH2Cl2 (3 x 7 mL) The organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford crude Michael addition product. The crude residue was purified by silica gel flash column chromatography.

185137-29-5 (S)-4-Phenylthiazolidine-2-thione 11333042, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Munive, Laura; Dzakuma, Sena A.; Olivo, Horacio F.; Tetrahedron Letters; vol. 54; 10; (2013); p. 1230 – 1232;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Extracurricular laboratory: Synthetic route of 5908-62-3

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

5908-62-3,1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

7 mg (0.03 mmol) of palladium(II) acetate and 18 mg (0.03 mmol) of Xantphos were stirred in 3.6 ml of dioxane under an argon atmosphere at 20 C. for 10 minutes. Then 150 mg (0.3 mmol) of the compound from Example 72A, 74 mg (0.06 mmol) of 1,3-propane sultam and 148 mg (0.46 mmol) of caesium carbonate were added and the mixture was stirred at 110 C. for 6 h. After cooling down to 23 C., the mixture was purified via preparative HPLC (eluent: acetonitrile/water gradient with 0.1% formic acid). This gave 95 mg (51% of theory) of the title compound. LC-MS (Method 1): Rt=1.15 min; m/z=579.2 [M+H]+. 1H-NMR (400 MHz, DMSO-d6) delta [ppm]: 1.156 (4.54), 1.174 (8.71), 1.192 (4.39), 1.987 (16.00), 2.297 (4.76), 2.314 (6.89), 2.331 (5.14), 3.577 (4.62), 3.590 (8.77), 3.606 (8.06), 3.634 (2.43), 4.020 (4.03), 4.037 (3.96), 4.815 (3.11), 4.827 (3.16), 4.845 (3.08), 4.859 (2.88), 7.325 (3.46), 7.334 (7.37), 7.356 (6.87), 7.380 (2.99), 7.399 (5.75), 7.420 (4.45), 7.526 (13.43), 7.546 (9.83), 7.555 (3.20), 7.811 (2.87), 7.826 (2.86), 8.595 (6.46), 8.617 (6.25), 8.754 (11.28), 10.157 (2.54), 10.171 (4.84).

As the rapid development of chemical substances, we look forward to future research findings about 5908-62-3

Reference£º
Patent; Bayer Pharma Aktiengesellschaft; TELLER, Henrik; STRAUB, Alexander; BRECHMANN, Markus; MUeLLER, Thomas; MEININGHAUS, Mark; NOWAK-REPPEL, Katrin; TINEL, Hanna; MUeNTER, Klaus; FLIEGNER, Daniela; MONDRITZKI, Thomas; BOULTADAKIS ARAPINIS, Melissa; MARQUARDT, Tobias; VAKALOPOULOS, Alexandros; REBSTOCK, Anne-Sophie; WITTWER, Matthias Beat; (342 pag.)US2018/297994; (2018); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Share a compound : 3-Aminorhodanine

As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

3-Aminorhodanine, cas is 1438-16-0, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

General procedure: General procedure for synthesis of N-substituted-rhodanine derivatives RhAs: To a solution of aldehydes (3a-3h, 1.0 equiv.) in ethanol (10 mL) was added slowly to the solution of 3-amino-2-thioxothiazolidin-4-one (2, 1.0 equiv.) in EtOH. The reaction mixture was stirred at room temperature without a catalyst for between 4 h and 12 h, and was monitored by TLC. After, the mixture product was recrystallized from EtOH. After recrystallization, N-substituted-rhodanine derivatives (RhAs) were obtained as follows., 1438-16-0

As the rapid development of chemical substances, we look forward to future research findings about 1438-16-0

Reference£º
Article; Bayindir; Caglayan, Cuneyt; Karaman, Muhammet; Guelcin, ?lhami; Bioorganic Chemistry; vol. 90; (2019);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Share a compound : 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, cas is 7025-19-6, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.

General procedure: A solution of 0.002 mol of rhodanine in 5 mL of ethanol and 0.05 mL of 2-aminoethanol were added to a solution of 0.002 mol of aldehyde 1 in 5 mL of ethanol. The mixture was refluxed for 2-3 h and cooled. The precipitate was filtered off and recrystallized.

As the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Sinenko; Slivchuk; Pil?o; Raenko; Brovarets; Russian Journal of General Chemistry; vol. 86; 7; (2016); p. 1597 – 1603; Zh. Obshch. Khim.; vol. 86; 7; (2016); p. 1119 – 1125,7;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 5908-62-3

With the rapid development of chemical substances, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

1,1-Dioxo-isothiazolidine, cas is 5908-62-3, it is a common heterocyclic compound, the thiazolidine compound, its synthesis route is as follows.,5908-62-3

A microwave vial was charged with (5-{7-chloro-6-fluoro-5-[(S)-oxan-4- yl(phenyl)methyl]-5H-pyrido[3,2-b]indol-3-yl}-4-(2H3)methyl-l-methyl-lH-l,2,3- triazole (30 mg, 0.061 mmol), isothiazolidine 1,1-dioxide (11.1 mg, 0.091 mmol), tripotassium phosphate (18.1 mg, 0.085 mmol), Pd2(dba)3 (2.8 mg, 3.0 muiotatauiotaomicron), 2-di-tert- butylphosphino-3,4,5,6-tetramethyl-2′,4′,6′-triisopropyl-l, -biphenyl (2.9 mg, 6.1 mumol), and dry tert-butanol (0.5 mL). The reaction was heated at 84C overnight. It was diluted with water and extracted with ethyl acetate. The organic layer was concentrated and purified by preparative HPLC (Column: XBridge CI 8, 19 x 200 mm, 5-muiotatauiota particles; Mobile Phase A: 5:95 acetonitrile: water with 10-mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10-mM ammonium acetate; Gradient: 15-55% B over 15 min, then a 5-min hold at 100% B; Flow: 20 mL/min) to give 2.1 mg (6%). NMR (500 MHz, DMSO) delta 8.61 (s, 1H), 8.11 (m, 1H), 7.96 (s, 1H), 7.64 (m, 2H), 7.45 (m, 1H), 7.35 (m, 2H), 7.28 (m, 1H), 5.91 (m, 1H), 3.9 (m, 5H), 3.77 (m, 1H), 3.52 (m, 3H), 3.29 (m, 1H), 2.55 9m, 2H), 1.78 (m, 1H), 1.35 (m, 2H), 1.1 (m, 1H); LCMS (M+H) = 578.35

With the rapid development of chemical substances, we look forward to future research findings about 1,1-Dioxo-isothiazolidine

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; HAN, Wen-Ching; DEGNAN, Andrew P.; DESKUS, Jeffrey A.; GAVAI, Ashvinikumar V.; GILL, Patrice; SCHMITZ, William D.; STARRETT, John E., Jr.; (193 pag.)WO2016/183115; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com