Fun Route: New Discovery of 1273-73-0

Compounds in my other articles are similar to this one(Bromoferrocene)Quality Control of Bromoferrocene, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Halide-Mediated Ortho-Deprotonation Reactions Applied to the Synthesis of 1,2- and 1,3-Disubstituted Ferrocene Derivatives, published in 2015-08-10, which mentions a compound: 1273-73-0, mainly applied to halide deprotonation disubstituted ferrocene derivative; crystal mol structure bromodiiodoferrocene, Quality Control of Bromoferrocene.

The ortho-deprotonation of halide-substituted ferrocenes by treatment with lithium tetramethylpiperidide (LiTMP) has been investigated. Iodo-, bromo-, and chloro-substituted ferrocenes were easily deprotonated adjacent to the halide substituents. The synthetic applicability of this reaction was, however, limited by the fact that, depending on the temperature and the degree of halide substitution, scrambling of both iodo and bromo substituents at the ferrocene core took place. Iodoferrocenes could not be transformed selectively into ortho-substituted iodoferrocenes since, in the presence of LiTMP, the iodo substituents scrambled efficiently even at -78°, and this process had occurred before electrophiles had been added. Bromoferrocene and certain monobromo-substituted derivatives, however, could be efficiently ortho-deprotonated at low temperature and reacted with a number of electrophiles to afford 1,2- and 1,2,3-substituted ferrocene derivatives For example, 2-bromo-1-iodoferrocene was synthesized by ortho-deprotonation of bromoferrocene and reaction with the electrophiles diiodoethane and diiodotetrafluoroethane, resp. In this and related cases the iodide scrambling process and further product deprotonation due to the excess LiTMP could be suppressed efficiently by running the reaction at low temperature and in inverse mode. In contrast to the low-temperature process, at room temperature bromo substituents in bromoferrocenes scrambled in the presence of LiTMP. Chloro- and 1,2-dichloroferrocene could be ortho-deprotonated selectively, but in neither case was scrambling of a chloro substituent observed As a further application of this ortho-deprotonation reaction, a route for the synthesis of 1,3-disubstituted ferrocenes was developed. 1,3-Diiodoferrocene was accessible from bromoferrocene in four steps. On a multigram scale an overall yield of 41% was achieved. 1,3-Diiodoferrocene was further transformed into sym. 1,3-disubstituted ferrocenes (1,3-R2Fc; R = CHO, COOEt, CN, CH:CH2).

Compounds in my other articles are similar to this one(Bromoferrocene)Quality Control of Bromoferrocene, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.

Reference:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com