Mothana, B.; Ban, F.; Boyd, R. J.; Thompson, A.; Hadden, C. E. published an article about the compound: Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate( cas:2199-44-2,SMILESS:O=C(C1=C(C)C=C(C)N1)OCC ).Quality Control of Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:2199-44-2) through the article.
Electron-withdrawing groups (EWGs) on the nitrogen atom of pyrroles have significant effects on the properties of the pyrrole. It has been suggested that the exptl. 13C chem. shifts show a general increase in deshielding effect with the increase of N-EWGs strength [A. Thompson, S. Gao, G. Modzelewska, D.S. Hughes, B. Patrick, D. Dolphin, Organic Lett., 2, 3587 (2000)]. However, recently observed 15N chem. shifts of pyrroles do not correlate with the N-EWG strength. To elucidate the relationship between the electronic structures of pyrroles and their nitrogen and carbon chem. shifts, d. functional theory calculations were performed on pyrroles with various substituents. A correlation between the paramagnetic shift and the 15N chem. shift was observed for the pyrroles, indicating that the nitrogen chem. shift trend for the pyrroles arises entirely from variations of the paramagnetic shift contribution. However, a general correlation between the 15N chem. shifts and the EWG strength does not exist. Natural chem. shielding (NCS) anal. shows that the changes in the σ(N5-R)-π* transitions and changes in the sum of the σ(C1-N5)-π* and σ(C4-N5)-π* transitions account for the nitrogen chem. shift trend observed in the pyrroles.
As far as I know, this compound(2199-44-2)Quality Control of Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com