An update on the compound challenge: 2199-44-2

This literature about this compound(2199-44-2)Category: thiazolidinehas given us a lot of inspiration, and I hope that the research on this compound(Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate, is researched, Molecular C9H13NO2, CAS is 2199-44-2, about Characterization, chemical optimization and anti-tumor activity of a tubulin poison identified by a p53-based phenotypic screen.Category: thiazolidine.

A robust p53 cell-based assay that exploits p53’s function as a transcription factor was used to screen a small mol. library and identify bioactive small mols. with potential antitumor activity. Unexpectedly, the majority of the highest ranking hit compounds from this screen arrest cells in mitosis and most of them impair polymerization of tubulin in cells and in vitro. One of these novel compounds, JJ78:1, was subjected to structure-activity relationship studies and optimized leading to the identification of JJ78:12. This mol. is significantly more potent than the original hit JJ78:1, as it is active in cells at two-digit nanomolar concentrations and shows clear antitumor activity in a mouse xenograft model as a single agent. The effects of nocodazole, a well established tubulin poison, and JJ78:12 on p53 levels are remarkably similar, supporting that tubulin depolymerization is the main mechanism by which JJ78:12 treatment leads to p53 activation in cells. In summary, these results identify JJ78:12 as a potential cancer therapeutic, demonstrate that screening for activators of p53 in a cell-based assay is an effective way to identify inhibitors of mitosis progression and highlights p53’s sensitivity to alterations during mitosis.

This literature about this compound(2199-44-2)Category: thiazolidinehas given us a lot of inspiration, and I hope that the research on this compound(Ethyl 3,5-Dimethyl-2-pyrrolecarboxylate) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Thiazolidine – Wikipedia,
Thiazolidine – ScienceDirect.com