Downstream synthetic route of 26364-65-8

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,26364-65-8

250mL three-necked flask cyanoimino-1,3-thiazolidine 3.4 g (0.0265mol), and treated with 150 mL of acetonitrile was stirred, after dissolved with K2CO3 3.7g (0.0265mol), a solution of 5.3 g (0.0265 mol) of diethoxy thiophosphoryl chloride (94%) in 50 mL of acetonitrile was slowly added dropwise, 15 min within the drop is completed, heating to 45C for 13 h. After completion of the reaction, the filtrate was concentrated to give a yellow oil which was passed through a silica gel column (V petroleum ether: V ethyl acetate = 7: 3). Recrystallization from ethyl acetate gave a colorless transparent crystal L090813. Melting point 49.2-51.5 C, yield 76.9%.

The synthetic route of 26364-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Qingdao Agricultural University; Sun, Jialong; (11 pag.)CN103554176; (2016); B;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

General procedure: A solution of 0.002 mol of rhodanine in 5 mL of ethanol and 0.05 mL of 2-aminoethanol were added to a solution of 0.002 mol of aldehyde 1 in 5 mL of ethanol. The mixture was refluxed for 2-3 h and cooled. The precipitate was filtered off and recrystallized.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Sinenko; Slivchuk; Pil?o; Raenko; Brovarets; Russian Journal of General Chemistry; vol. 86; 7; (2016); p. 1597 – 1603; Zh. Obshch. Khim.; vol. 86; 7; (2016); p. 1119 – 1125,7;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 7025-19-6

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

The synthetic route of 7025-19-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

The Compound (H-1) (2.63 g), rhodanine-3-propionic acid (2.05 g) and ammonium acetate (0.52 g) were dissolved in 2.2 g of acetic acid, and the mixture was stirred under heat at 120C. After 15 minutes, when the heating was stopped, the reaction product immediately solidified. The reaction product was cooled to room temperature, and then, water (50 ml) was added. The mixture was stirred, and a crystal was recovered by filtration. The crystal was transferred into a beaker, and the crystal was washed with water (100 ml) twice and then washed with 2-propnanol (100 ml) to give Compound (B-28) shown as an example. 4.08 g. Yield 90.6 %. Melting point = 215.6 – 220.2C. Fig. 8 shows UV absorption spectrum of Compound (B-28) in ethanol. A maximum absorption wavelength (lambdamax) = 486.0 nm. A maximum molecular coefficient (epsilon max) = 43,700 l/mol¡¤cm.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; MITSUBISHI PAPER MILLS LIMITED; EP1526159; (2005); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,5908-62-3

Under a nitrogen atmosphere, a solution of 5-bromo-6-chloro- pyridine-2-carboxylic acid methyl ester (Example 9 c, lg, 4 mmol), isothiazolidine 1 , 1 -dioxide (730 mg, 06 mmol), copper(I) iodide (150 mg, 0.8 mmol), l ,3-di(pyridin-2-yl)propane-l ,3-dione (CAN 10198- 89-7, 180 mg, 0.8 mmol) and potassium carbonate (1.1 g, 8 mmol) in DMF (20 mL) was reacted for 24 h at 1 10C. The reaction mixture was poured into water, and extracted with ethyl acetate (3 x 50 mL). The combined organic extracts were washed with water and brine, dried over anhydrous sodium sulfate and evaporated. The residue was purified by column chromatography (silica gel, 4 g, 10% ethyl acetate in petroleum ether) to yield the title compound (0.048 g, 1.6 mmol, 41.4 %) as yellow solid; MS (EI): m/e = 291.0[M+Hf.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; BISSANTZ, Caterina; GRETHER, Uwe; HEBEISEN, Paul; KIMBARA, Atsushi; LIU, Qingping; NETTEKOVEN, Matthias; PRUNOTTO, Marco; ROEVER, Stephan; ROGERS-EVANS, Mark; SCHULZ-GASCH, Tanja; ULLMER, Christoph; WANG, Zhiwei; YANG, Wulun; WO2012/168350; (2012); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of 5-chloroisatin (182 mg, 1.0 mmol) and N-carboxyethylrhodanine (205 mg, 1.0 mmol) was added DMSO-d6 (3.0 mL). The reaction was followed by proton NMR until the disappearance of the starting material.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Xue, Fengtian; MacKerell Jr., Alexander D.; Heinzl, Geoffrey; Hom, Kellie; Tetrahedron Letters; vol. 54; 13; (2013); p. 1700 – 1703;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 179087-93-5

179087-93-5 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid 11323485, athiazolidine compound, is more and more widely used in various fields.

179087-93-5, 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,179087-93-5

Acetonitrile (140.9 kg) was added to 4-[(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetic acid (18.0 kg, 64.0 mol) produced according to the process described in Japanese Patent Application (Kokai) No. 2001-72671, and after cooling to an internal temperature of 8C, thionyl chloride (8.3 kg, 69.8 mol) was added. Dimethylformamide (14.4 L) was further added followed by stirring for 3.5 hours at a temperature of 8 to 15C. An acetonitrile (84.6 kg) solution of tert-butyl N-(2-amino-5-methoxyphenyl)-N-methylcarbamate (15.7 kg, 62.2 mol) and triethylamine (8.4 kg, 83.0 mol) held at a temperature of 0 to 10C was added dropwise thereto over 1 hour while cooling so as to maintain at a temperature of 0 to 5C followed by further stirring for 2 hours at the same temperature. Next, water (144 L) was added over 22 minutes followed by stirring for 30 minutes while holding at an internal temperature of 0 to 6C and allowing to stand undisturbed for 12 hours. After filtering out the resulting crystals, the crystals were washed with a 2:1 aqueous solution (54 L) to obtain wet crystals of tert-butyl N- {2-{4-(2,4-dioxothiazolidin-5-yl)methyl]phenoxyacetylamino}-5-methoxyphenyl}-N-methylcarbamate.

179087-93-5 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid 11323485, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP1902713; (2008); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

To a stirred solution of racemic 3-fluoro-2-({9-fluoro-6-methanesulfonyl-3-[4- (2H3)methyl-l-methyl-lH-l,2,3-triazol-5-yl]-5H-pyrido[3,2-b]indol-5-yl}(oxan-4- yl)methyl)pyridine (80.0 mg, 0.140 mmol) and isothiazolidine- 1,1 -dione (69.8 mg, 0.580 mmol) in NMP (0.70 mL) was added t-BuOK (56.5 mg, 0.500 mmol). The mixture was heated at 65 C for 70 min and cooled to room temperature. The mixture was diluted with water and extracted with EtOAc. Combined EtOAc extracts were dried (MgSCn), filtered, and concentrated. The crude product was purified by silica gel column chromatography (Teledyne ISCO CombiFlash 0% to 100% solvent A/B= DCM/10% MeOH/DCM, RediSep Si02 12 g, detecting at 254 nM, and monitoring at 220 nM). Concentration of appropriate fractions provided racemic 2-{5-[(3-fluoropyridin-2- yl)(oxan-4-yl)methyl]-6-methanesulfonyl-3-[4-(2H3)methyl-l-methyl-lH-l,2,3-triazol-5- yl]-5H-pyrido[3,2-b]indol-9-yl}-l 6,2-thiazolidine-l,l-dione (110 mg). This racemic mixture was separated by chiral prep SFC (Berger SFC MGII, ColummChiral IB 25 X 2.1 cm ID, 5muiotaeta Flow rate: 50.0 mL/min. Mobile Phase: 80/20 CC /MeOH Detector Wavelength: 220 nm) to give Enantiomers A (13.3 mg, 13%) and B (10.5 mg, 11%). Enantiomer A: NMR (400MHz, CDCb) delta 8.57 (d, J=1.8 Hz, 1H), 8.46 (dt, J=4.4, 1.5 Hz, 1H), 8.40 (d, J=8.6 Hz, 1H), 8.15 (d, J=2.0 Hz, 1H), 7.77 (d, J=8.6 Hz, 1H), 7.41- 7.28 (m, 3H), 4.34-4.24 (m, 1H), 4.21-4.11 (m, 1H), 4.01 (br dd, J=12.0, 2.7 Hz, 1H), 3.95 (s, 3H), 3.82 (br dd, J=11.6, 3.1 Hz, 1H), 3.61-3.53 (m, 2H), 3.46 (br d, J=2.3 Hz, 1H), 3.43 (s, 3H), 3.34 (br d, J=11.7 Hz, 1H), 3.20 (td, J=l 1.9, 1.9 Hz, 1H), 2.84-2.71 (m, 2H), 1.89-1.74 (m, 3H), 0.54 (br d, J=13.0 Hz, 1H); SFC RT = 10.07 min (Column: Chiralcel IB 250 x 4.6 mm, 5 muiotaeta; Mobile Phase: 80/20 CCh/MeOH; Flow: 2 mL/min); Enantiomer B: NMR (400MHz, CDCb) delta 8.56 (d, J=1.8 Hz, 1H), 8.45 (dt, J=4.3, 1.4 Hz, 1H), 8.40 (d, J=8.6 Hz, 1H), 8.15 (d, J=1.8 Hz, 1H), 7.76 (d, J=8.6 Hz, 1H), 7.42- 7.28 (m, 3H), 4.34-4.24 (m, 1H), 4.22-4.12 (m, 1H), 4.01 (br dd, J=11.7, 2.8 Hz, 1H), 3.95 (s, 3H), 3.82 (br dd, J=l 1.3, 3.2 Hz, 1H), 3.56 (dt, J=7.7, 3.9 Hz, 2H), 3.46 (br d, J=2.4 Hz, 1H), 3.43 (s, 3H), 3.37-3.28 (m, 1H), 3.23-3.15 (m, 1H), 2.84-2.69 (m, 2H), 1.79 (br dd, J=12.8, 4.2 Hz, 3H), 0.54 (br d, J=12.8 Hz, 1H) LCMS (M+H) = 556.2; SFC RT = 12.21 min (Column: Chiralcel IB 250 x 4.6 mm, 5 muiotaeta; Mobile Phase: 80/20 CCh/MeOH; Flow: 2 mL/min).

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; HAN, Wen-Ching; DEGNAN, Andrew P.; DESKUS, Jeffrey A.; GAVAI, Ashvinikumar V.; GILL, Patrice; SCHMITZ, William D.; STARRETT, John E., Jr.; (193 pag.)WO2016/183115; (2016); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Brief introduction of 26364-65-8

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various fields.

26364-65-8, 2-Cyanoimino-1,3-thiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,26364-65-8

General procedure: Thiazolidin-2-ylidene-cyanamide (0.317 g, 2.50 mmol) inacetonitrile (20 mL) was dropwise added to a stirred solutionof substituted benzyl bromide (2.5 mmol) and 14 mL NaOHaqueous solution (1 M). The mixture is stirred at room temperaturefor 8-10 h. The soild was collected by filtration,washed with n-hexane and dried in vacuo.

26364-65-8 2-Cyanoimino-1,3-thiazolidine 3700797, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Jia, Ai-Quan; Ma, Sen; Wang, Jun-Ling; Zhang, Qian-Feng; Journal of Chemical Crystallography; (2020);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

Preparation 71 2-(2,4-Dimethoxybenzyl)-isothiazolidine-1,1-dioxide A solution of 1,1-(azodicarbonyl)dipiperidine (1.874 g, 7.4 mmol) in anhydrous tetrahydrofuran (10 mL) was added dropwise to a 0 C. solution of 1,3-propanesultam (0.6 g, 4.95 mmol), triphenylphosphine (1.95 g, 7.4 mmol), and 2,4-dimethoxybenzyl alcohol (1.0 g, 6.2 mmol) in anhydrous tetrahydrofuran (20 mL). The resultant solution was stirred at 0 C. for 3 hrs, warmed to room temperature and stirred for a further 16 hrs. The solution was concentrated under reduced pressure and suspended in ethyl acetate/hexanes to precipitate a white solid. The solid was removed by filtration and the filtrate purified by silica gel chromatography (25-70% ethyl acetate/hexanes) to give a pale yellow oil (0.505 g). 1H NMR (CDCl3, 300 MHz) delta 7.31-7.28 (dd, 1H, J=0.6, 7.8 Hz), 6.49-6.44 (m, 2H), 4.17 (s, 2H), 3.81 (s, 3H), 3.80 (s, 3H), 3.19-3.13 (m, 4H), 2.32-2.23 (m, 2H).

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; Bersot, Ross; Humphries, Paul; US2013/303524; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com