Simple exploration of 7025-19-6

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

7025-19-6, 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,7025-19-6

General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

As the paragraph descriping shows that 7025-19-6 is playing an increasingly important role.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

To a solution of 3-iodo-N-(3,4,5-trifluorophenyl)-4,5,6,7-tetrahydropyrazolo[l,5- a]pyridine-5-carboxamide (compound lh, 20 mg, 0.048 mmol) in DMSO (1.0 mL) was added Cul (2 mg, 0.0095 mmol), K2C03 (7 mg, 0.095 mmol), N,N’-dimethyl-l,2-cyclohexanediamine (2 mg, 0.0095 mmol), and 1,2-thiazolidine 1,1-dioxide (compound 5a, 5 mg, 0.057 mmol). The reaction mixture was stirred at 110 C for 18 hours and then purified by flash chromatography and prep-HPLC to give 3-(l,l-dioxo-l,2-thiazolidin-2-yl)-N-(3,4,5-trifluorophenyl)-4,5,6,7- tetrahydropyrazolo[l,5-a]pyridine-5-carboxamide (Example 5, 11.5 mg) as a white solid. 1H NMR (400MHz, CDC13) delta 8.21 (s, 1H), 7.56 (s, 1H), 7.41 – 7.26 (m, 2H), 4.27 – 4.14 (m, 1H), 4.07 (m, 1H), 3.73 – 3.54 (m, 2H), 3.36 (t, 2H), 3.25 – 3.08 (m, 2H), 2.84 – 2.72 (m, 1H), 2.60 – 2.39 (m, 3H), 2.34 – 2.21 (m, 1H). MS obsd. (ESI+) [(M+H)+]: 415

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; HOFFMANN-LA ROCHE INC.; HU, Taishan; SHEN, Hong; HAN, Xingchun; (45 pag.)WO2018/11100; (2018); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.

7025-19-6, General procedure: To a mixture of aldehyde (1.0 mmol), 3-(4-oxo-2-thioxothiazolidin-3-yl)propanoic acid (205 mg,1.0 mmol) or 3-(2-(1H-tetrazol-5-yl)ethyl)-2-thioxothiazolidin-4-one (229 mg, 1.0 mmol) and NaOAc (820 mg, 10.0 mmol) was added acetic acid (5.0 mL). The reaction was allowed to stir at 105 C for 0.5h – 12h, then cooled to room temperature. To the reaction was added water (15mL). The resulting mixture was sonicated to give yellow-orange slurry. After filtration, the solid was washed with water (75 mL) and dried under high vacuum to yield the corresponding product as a red fine powder.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Liang, Dongdong; Robinson, Elizabeth; Hom, Kellie; Yu, Wenbo; Nguyen, Nam; Li, Yue; Zong, Qianshou; Wilks, Angela; Xue, Fengtian; Bioorganic and Medicinal Chemistry Letters; vol. 28; 6; (2018); p. 1024 – 1029;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Application of Benzo-18-crown 6-Ether

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

The thiazolidine compound, cas is 7025-19-6 name is 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid, mainly used in chemical industry, its synthesis route is as follows.

7025-19-6, General procedure: To a mixture of 5-chloroisatin (182 mg, 1.0 mmol) and N-carboxyethylrhodanine (205 mg, 1.0 mmol) was added DMSO-d6 (3.0 mL). The reaction was followed by proton NMR until the disappearance of the starting material.

With the rapid development of chemical substances, we look forward to future research findings about 7025-19-6

Reference£º
Article; Xue, Fengtian; MacKerell Jr., Alexander D.; Heinzl, Geoffrey; Hom, Kellie; Tetrahedron Letters; vol. 54; 13; (2013); p. 1700 – 1703;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Simple exploration of 5908-62-3

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

5908-62-3, 1,1-Dioxo-isothiazolidine is a thiazolidine compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

5908-62-3, Example 86; N- (3-Cyclobutyl-2, 3, 4,5-tetrahydro-1 H-3-benzazepin-7-yl)-4- (1, 1-dioxido-2- isothiazolidinyl) benzamide (E86); A mixture of N- (3-cyclobutyl-2, 3,4, 5-tetrahydro-1 H-3-benzazepin-7-yl)-4-iodobenzamide (E11) (150mg, 0.34 mmol), potassium carbonate (169 mg, 1.22 mmol), copper (1) iodide (19 mg, 0.1 mmol), N,N’-dimethyl-1, 2-ethanediamine (0.01 ml, 0.1 mmol) and isothiazolidine 1,1-dioxide (123 mg, 1.0 mmol) in dioxan (3 ml) was heated in a microwave reactor at 140 C for 20 minutes. The mixture was diluted with methanol and purified on an SCX ion exchange cartridge eluting with methanol and then a 2M methanolic ammonia solution. The basic fractions were concentrated in vacuo and the residue purified by column chromatography eluting with a mixture of 2M methanolic ammonia solution and dichloromethane (3-97) to afford the title compound (E86) MS (ES+), m/e 440 [M+H] +.

As the paragraph descriping shows that 5908-62-3 is playing an increasingly important role.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/58837; (2005); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 5908-62-3

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

1,2-thiazolidine 1,1-dioxide (0.03 I g, 0.259 mmol) in dimethylformamide (1 mL) was treated with 60% sodium hydride (0.012g, 0.518 mmol, 0.021 g of a 60% in oil dispersion).The reaction mixture was stirred for 5 mm. To this solution was added Example 41b (0.05 g,0.086 mmol). The reaction mixture was stirred at room temperature for 2 hours. 2 N NaOH (1 mL) was added and the reaction mixture was heated at 65 C for 2 hours. After cooling to room temperature, the reaction mixture was partitioned between water and ethyl acetate. The aqueous layer was extracted with additional ethyl acetate twice. The combined organic layerswere washed with brine, dried over MgSO4, filtered, and concentrated. The residue was purified by preparative HPLC (C18, 10-80% acetonitrile in 0.1% TFA water) to afford 0.025 g (64%) of the title compound. 1H NMR (500 MHz, DMSO-d6) 2.21-2.25 (m, 2H), 3.15 (t, J=6.97 Hz, 2H), 3.23-3.27 (m, 2H), 3.50 (s, 3H), 4.13 (s, 2H), 6.25-6.26 (m, IH), 6.88 (d, J=7.63 Hz, 2H), 7.00 (d, J8.54 Hz, 1H), 7.03-7.05 (m, IH), 7.25-7.30 (m, 4H), 7.34 (dd,J=8.39, 2.29, ZH), 7.48 (d, J=2.44 Hz, 1H), 12.00 (s, 1 H). MS (ESI+) m/z 450.2 (M+H).

5908-62-3 1,1-Dioxo-isothiazolidine 642157, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; ABBOTT LABORATORIES; ABBOTT LABORATORIES TRADING (SHANGHAI) COMPANY, LTD.; WANG, Le; PRATT, John, K.; MCDANIEL, Keith, F.; WO2013/97052; (2013); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Some tips on 1438-16-0

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1438-16-0,3-Aminorhodanine,as a common compound, the synthetic route is as follows.,1438-16-0

Procedure B. To a solution of RhA-8 (300 mg, 1.09 mmol) in ethanol(10 mL) was added slowly a solution of 3-amino-2-thioxothiazolidin-4-one (2, 158.2 mg, 1.09 mmol) in ethanol and was added to acetic acid(2 drops) as a catalyst. The reaction mixture was refluxed for 8 h, andwas monitored by TLC. After the completion of the reaction, the mixturewas cooled to room temperature. The red product formed wasrecrystallized from ethanol, filtered, and dried in vacuo. After recrystallization,4 (382 mg, 87%) was obtained as red solid(Mp:>300 C). 1H NMR (400 MHz, DMSO-d6): delta 12.41 (bs, NH, 1H),12.08 (bs, NH, 1H), 8.82 (s, N=CH, 1H), 8.22 (d, J=7.7 Hz, =CH,1H), 8.14-8.13 (m, =CH, 2H), 8.00-7.97 (m, =CH, 2H), 7.54-7.52 (m,=CH, 2H), 7.31-7.22 (m, =CH, 3H), 5.96 (s, =CH, 1H); 13C NMR(100 MHz, DMSO-d6): delta 206.9, 171.1, 165.7, 157.0, 147.8, 144.8,138.2, 137.3, 136.4, 135.6, 135.1, 130.7, 126.7, 124.2, 123.4, 122.3,121.6, 113.3, 112.6, 111.2, 110.3 (Fig. S9); IR (KBr, cm-1): 3242 cm-1 (=CeH), 1729 cm-1 (C]O), 1612 cm-1 (O]C-N-C]S), 1414,1315 cm-1 (C]S); ESI-MS (m/z) [M] calcd for C21H14N4OS2 402.49,found: 402.12.

As the paragraph descriping shows that 1438-16-0 is playing an increasingly important role.

Reference£º
Article; Bayindir; Caglayan, Cuneyt; Karaman, Muhammet; Guelcin, ?lhami; Bioorganic Chemistry; vol. 90; (2019);,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

New learning discoveries about 5908-62-3

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5908-62-3,1,1-Dioxo-isothiazolidine,as a common compound, the synthetic route is as follows.,5908-62-3

Step 2-1-(1,1-dioxo-isothiazolidin-2-ylmethyl)-3-benzyl-5-bromo-benzene (8B) A mixture of 8A (5 g, 14.7 mmol), 1,3-propanesultam (3.6 g, 29.7 mmol) and potassium carbonate (4.1 g, 29.7 mmol) in acetonitrile (60 mL) was refluxed overnight. The solvent was removed under reduced pressure. The residue was partitioned between ethyl acetate and brine. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatograph (ethyl acetate/hexanes) to give 8B as a white solid.

The synthetic route of 5908-62-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Zhuang, Linghang; Wai, John S.; Payne, Linda S.; Young, Steven D.; Fisher, Thorsten E.; Embrey, Mark W.; Guare, James P..; US2005/10048; (2005); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 7025-19-6

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7025-19-6,3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid,as a common compound, the synthetic route is as follows.,7025-19-6

General procedure: A solution of 0.002 mol of rhodanine in 5 mL of ethanol and 0.05 mL of 2-aminoethanol were added to a solution of 0.002 mol of aldehyde 1 in 5 mL of ethanol. The mixture was refluxed for 2-3 h and cooled. The precipitate was filtered off and recrystallized.

7025-19-6 3-(4-Oxo-2-thioxothiazolidin-3-yl)propanoic acid 81492, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Article; Sinenko; Slivchuk; Pil?o; Raenko; Brovarets; Russian Journal of General Chemistry; vol. 86; 7; (2016); p. 1597 – 1603; Zh. Obshch. Khim.; vol. 86; 7; (2016); p. 1119 – 1125,7;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com

Analyzing the synthesis route of 179087-93-5

179087-93-5 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid 11323485, athiazolidine compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.179087-93-5,2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid,as a common compound, the synthetic route is as follows.,179087-93-5

Example 3 N-[2-[4-(2,4-Dioxothiazolidin-5-ylmethyl)phenoxyacetylamino]-5-methoxyphenyl]-N-methylcarbamic Acid t-butyl Ester (Exemplification Compound Number 9-8) To a suspension at 0 C. of N-(2-amino-5-methoxyphenyl)-N-methylcarbamic acid t-butyl ester (4.2 g) and 4-(2,4-dioxothiazolidin-5-ylmethyl)phenoxyacetic acid (5.2 g) in methylene chloride (30 ml) was added triethylamine (5.1 ml) and 50% propylphosphonic acid cyclic anhydride in ethyl acetate (12.7 g) and the mixture was stirred at the same temperature for 2 hours. At the end of this time to the reaction mixture was added 5% aqueous sodium hydrogencarbonate solution and the mixture was extracted with methylene chloride. The extract was washed with water and diluted hydrochloric acid and concentrated in vacuo. To the residue was added methanol (40 ml) and the precipitated crystals were filtered to give the title compound (7.3 g, yield 85%). IR spectrum (KBr, nu cm-1): 3323, 1751, 1697, 1534, 1510, 1232, 1153. 1H-NMR spectrum (DMSO-d6, 400 MHz, delta ppm): 1.28(9H, br.s), 3.02(3H, s), 3.07(1H, dd, J=14.0, 9.1 Hz), 3.31(1H, dd, J=14.0, 4.3 Hz), 3.74(3H, s), 4.65(2H, s), 4.87(1H, dd, J=9.1, 4.3 Hz), 6.80-6.95(2H, m), 6.92(2H, d, J=8.5 Hz), 7.19(2H, d, J=8.5 Hz), 7.69(1H, br.s), 8.95(1H, br.s), 12.00(1H, br.s).

179087-93-5 2-(4-((2,4-Dioxothiazolidin-5-yl)methyl)phenoxy)acetic acid 11323485, athiazolidine compound, is more and more widely used in various fields.

Reference£º
Patent; SANKYO COMPANY, LIMITED; US2003/8907; (2003); A1;,
Thiazolidine – Wikipedia
Thiazolidine – ScienceDirect.com